

SECURITY AUDIT OF

RONIN BRIDGE SMART CONTRACTS

Public Report

Jun 28, 2022

Verichains Lab
info@verichains.io

https://www.verichains.io

Driving Technology > Forward

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 2

ABBREVIATIONS

Name Description

Ethereum An open source platform based on blockchain technology to create and
distribute smart contracts and decentralized applications.

Ether
(ETH)

A cryptocurrency whose blockchain is generated by the Ethereum platform.
Ether is used for payment of transactions and computing services in the
Ethereum network.

Smart
contract

A computer protocol intended to digitally facilitate, verify or enforce the
negotiation or performance of a contract.

Solidity A contract-oriented, high-level language for implementing smart contracts for
the Ethereum platform.

Solc A compiler for Solidity.

ERC20 ERC20 (BEP20 in Binance Smart Chain or xRP20 in other chains) tokens are
blockchain-based assets that have value and can be sent and received. The
primary difference with the primary coin is that instead of running on their
own blockchain, ERC20 tokens are issued on a network that supports smart
contracts such as Ethereum or Binance Smart Chain.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 3

EXECUTIVE SUMMARY
This Security Audit Report prepared by Verichains Lab on May 17, 2022. We would like

to thank the Sky Mavis for trusting Verichains Lab in auditing smart contracts. Delivering high-
quality audits is always our top priority.

This audit focused on identifying security flaws in code and the design of the Ronin Bridge
Smart Contracts. The scope of the audit is limited to the source code files provided to
Verichains. Verichains Lab completed the assessment using manual, static, and dynamic
analysis techniques.

During the audit process, the audit team had identified some vulnerable issues in the
application, along with some recommendations. Sky Mavis team has resolved and updated
smart contract code following our recommendations. Ronin Bridge Smart Contracts has passed
with no Medium, High, or Critical severity issues.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 4

TABLE OF CONTENTS
1. MANAGEMENT SUMMARY ... 6	

1.1. About Ronin Bridge Smart Contracts .. 6	
1.2. Audit scope .. 6	
1.3. Audit methodology ... 8	
1.4. Disclaimer ... 9	

2. AUDIT RESULT .. 10	
2.1. Overview ... 10	

2.1.1. Validators ... 10	
2.1.2. Bridges .. 10	
2.1.3. Deposits .. 10	
2.1.4. Withdrawals .. 11	
2.1.5. Governance ... 11	

2.2. Architecture Security Review ... 13	
2.2.1. Security Assumptions ... 13	
2.2.2. Security Controls and Gaps .. 14	
2.2.3. Security Recommendation .. 14	

2.3. Code Review Findings .. 16	
2.3.1. WithdrawalLimitation.sol - lastDateSynced is not updated for each token 16	
2.3.2. MainchainGatewayV2.sol - WITHDRAWAL_UNLOCKER_ROLE should not be granted to

validators .. 17	
2.3.3. RoninValidator.sol - Incorrect handling can lead to duplicated governor 19	
2.3.4. RoninGatewayV2.sol - bulkAcknowledgeMainchainWithdrew can be abused to prevent calling

of requestWithdrawalSignatures .. 20	
2.3.5. DEFAULT_ADMIN_ROLE should be granted to the GovernanceAdmin contract 21	

2.4. Additional notes and recommendations ... 22	
2.4.1. Ballot.sol - Governor cannot see proposal data when signing the ballot 22	
2.4.2. MainchainGatewayV2.test.ts - Using wrong comparison operator 23	
2.4.3. MainchainGatewayV2.test.ts - Wrong testcase description 23	
2.4.4. MainchainGatewayV2.sol - Withdrawal limit check for ERC721 should be skipped for gas

saving .. 24	
2.4.5. MainchainGatewayV2.test.ts - BigNumber cannot be added to JS number directly

 .. 25	

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 5

2.4.6. Governance.sol - Missing length check for _supports and _signatures arrays
 ... 26	

2.4.7. Token.sol - Waste of gas when trying to send native tokens two times 27	
2.4.8. WithdrawalLimitation.sol - fullSigThreshold and lockedThreshold are not consistent with the

description ... 28	
3. VERSION HISTORY .. 30	

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 6

1. MANAGEMENT SUMMARY

1.1. About Ronin Bridge Smart Contracts

The Ronin Bridge allows funds to be transferred from Ethereum to the Ronin Network and
vice versa. The main features of the bridge are:

• Fast & seamless transactions with almost instant confirmation.
• Drastically reduced gas fees.
• The ability to withdraw Axie assets back to Ethereum Mainnet.
• Simplified on-boarding for new users, through a customized wallet solution.

1.2. Audit scope

This audit focused on identifying security flaws in code and the design of Ronin Bridge
Smart Contracts. It was conducted on commit bbfe4508d2b9c9ecd3de5f9b5690b7c5b82f53c8
from git repository https://github.com/axieinfinity/ronin-smart-contracts-v2.

The latest version of the following files was made available in the course of the review:

SHA256 Sum File

ad15c1d1e9af2d7d44fd3f79a2490201bf0fca4bb5e574a7625
53ec3a964cb6b

contracts/v0.8/extensions/GatewayV2.sol

0f40acf1dc9093a94ed61a1a1ed288f6c283fb8a4c4ca7e30ba2
04b058e12005

contracts/v0.8/extensions/governance/Governance.sol

1bb9630106a239d0ac9b9f6b2208e6f2110243d880ef9f4b59c
e8730a0df4e09

contracts/v0.8/extensions/governance/GatewayGover
nance.sol

2818fd8ddcebcfaa3f1e99b39d0d66e46847f81d8a044c3500b
5ede21acf5495

contracts/v0.8/extensions/governance/GlobalProposal
Governance.sol

12bd0a2c0214a6018b4354f8843b92b05891e0c44c6260c450
edfd76b02ce0e8

contracts/v0.8/extensions/governance/ProposalGover
nance.sol

abb733ea41a7dc98f2bb173915b5c8d93b2c69e41c38710419
2f8e2223b36bc4

contracts/v0.8/extensions/WithdrawalLimitation.sol

24aef138712d0d2f8d18da3ac5fd2b873d10ce60eb845ffdcb0
768fb7b452580

contracts/v0.8/extensions/HasProxyAdmin.sol

cb70c81c0e18125d236bf4a31352f7092abaa5b47d5f46e22c2
5f52bd1593fc8

contracts/v0.8/extensions/MinimumWithdrawal.sol

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 7

56f02515eac98350739f670a0a9a28f3974431d198f55db0bc6
37cb793a0c127

contracts/v0.8/extensions/TransparentUpgradeablePr
oxyV2.sol

8ab73c3fe72a92f2bdd016f3a5c51de87db04e0da7d8fd82391
bc1a2628654d2

contracts/v0.8/mocks/MockERC721.sol

49f5985faaab611c67c0e5e40231ba3dcbb8604191c5ea93499
e2d064a20d44e

contracts/v0.8/mocks/MockGatewayV2.sol

a93c33101084deef5fca264a4dff73f05cce8ca33519648d2128
596b62946214

contracts/v0.8/interfaces/IERC721Mintable.sol

be50351f320fb7b50630c2bd922c970de370166a0b004af4ff5
39582fa3295d9

contracts/v0.8/interfaces/IWeightedValidator.sol

4795937cb211a75c6c525b06508e7f57d73e7bbc24d6b4e36c
b3d26b2c19aea5

contracts/v0.8/interfaces/IERC20Mintable.sol

688a73efabe2972c17647f4daba15e1e55d59aa9a5d267cf7c1f
2aca26dddfda

contracts/v0.8/interfaces/IWETH.sol

f9f8a78e55b9de1c5627e5be695e004c7bc29a3e387358e5a25
d430550791052

contracts/v0.8/interfaces/SignatureConsumer.sol

5e12f2f1134550dfe70bc1f2503ff11fb9181c6b874f29bc2623
93e01c5daa12

contracts/v0.8/interfaces/IQuorum.sol

c1abe887c2b7fadcc37d07924257aea9ef5fbd52f132a1b0c2ee
108ec02de48d

contracts/v0.8/common/RoninValidator.sol

b20947552bd082d9cbac22194b63719ba055aa10aac977ee70
adc8cf369bdc11

contracts/v0.8/common/GovernanceAdmin.sol

1a24068588f8e02cedb1ea4d0a97e54514c9e6fee08e024159a
9dc458917cc90

contracts/v0.8/mainchain/IMainchainGatewayV2.sol

1de77980597b60998c7229cd95c513b574e43aac151c8a33e5
5ace818dc88f98

contracts/v0.8/mainchain/MainchainGatewayV2.sol

20983d4eb425c6a75f50df57faa2f48cd7c253c7960d7a271db
5048cf287e228

contracts/v0.8/library/Proposal.sol

0315dc0386363aa73cf1c9fc8cb37952acc9fbb920748b9fcb0
8e668d51191ab

contracts/v0.8/library/Token.sol

86ba568b7e2d0c28b57e319423db1291fa5409a0408e755978
f78fd6ebdceb53

contracts/v0.8/library/Transfer.sol

7fa90967172ab597e796ad4fbcff98c826890670af5f475cda02
452c28d0584f

contracts/v0.8/library/BridgeProposal.sol

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 8

ebaac64bd83794d8051c5e3067c04320a24055e14dd5454a17
dba7cb117ad23b

contracts/v0.8/library/Ballot.sol

f88b96867e7e49adfa751ba2c651b189b05db77d835c36673d
a5f8cfbffa2561

contracts/v0.8/ronin/RoninGatewayV2.sol

07a169a239fba383088cdd6c4eb2e76deb9c594ffea9b5c61c8
27420fe0ed3f9

contracts/v0.8/ronin/IRoninGatewayV2.sol

e27cf5a7108005fc14a0a8c8d6361510cb4b1b874bf17e5eb30
b2b2426b81f2a

test/v0.8/common/RoninValidator.test.ts

d2cb6a8db49913636cd9d37e46788812d02a8351a70219154
84e1b1482bf75ae

test/v0.8/common/GovernanceAdmin.test.ts

f0126aafc0dc40c85a3848f0e4548e52c716d45db600d9bf513
f5271d1ce3ba2

test/v0.8/mainchain/MainchainGatewayV2.test.ts

0f39c39321a8b8f8c08c72002f10bcc94f7dacd92f4f49596bac
bf307e554c8d

test/v0.8/ronin/RoninGatewayV2.test.ts

1.3. Audit methodology

Our security audit process for smart contract includes two steps:

• Smart contract codes are scanned/tested for commonly known and more specific
vulnerabilities using public and RK87, our in-house smart contract security analysis
tool.

• Manual audit of the codes for security issues. The contracts are manually analyzed to
look for any potential problems.

Following is the list of commonly known vulnerabilities that was considered during the
audit of the smart contract:

• Integer Overflow and Underflow
• Timestamp Dependence
• Race Conditions
• Transaction-Ordering Dependence
• DoS with (Unexpected) revert
• DoS with Block Gas Limit
• Gas Usage, Gas Limit and Loops
• Redundant fallback function
• Unsafe type Inference
• Reentrancy
• Explicit visibility of functions state variables (external, internal, private and public)
• Logic Flaws

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 9

For vulnerabilities, we categorize the findings into categories as listed in table below,
depending on their severity level:

SEVERITY
LEVEL

DESCRIPTION

 A vulnerability that can disrupt the contract functioning; creates a critical
risk to the contract; required to be fixed immediately.

 A vulnerability that could affect the desired outcome of executing the
contract with high impact; needs to be fixed with high priority.

 A vulnerability that could affect the desired outcome of executing the
contract with medium impact in a specific scenario; needs to be fixed.

 An issue that does not have a significant impact, can be considered as less
important.

Table 1. Severity levels

1.4. Disclaimer

Please note that security auditing cannot uncover all existing vulnerabilities, and even an
audit in which no vulnerabilities are found is not a guarantee for a 100% secure smart contract.
However, auditing allows discovering vulnerabilities that were unobserved, overlooked during
development and areas where additional security measures are necessary.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 10

2. AUDIT RESULT

2.1. Overview

The Ronin Bridge Smart Contracts was written in Solidity language, with the required
version to be ^0.8.0. The source code was written based on OpenZeppelin's library.

2.1.1. Validators

Only validators can produce blocks on Ronin. Validators can also acknowledge deposit and
withdrawal events to facilitate asset transfers between Ronin and other EVM-based chains.

2.1.2. Bridges

The bridge is designed to support multiple chains. When a deposit event happens on the
mainchain, the Bridge component in each validator node will pick it up and relay it to Ronin
by sending a corresponding transaction. For withdrawal and governance events, it will start
from Ronin and then being relaid on other chains.

Depending on the action, these transactions will be relayed to GovernanceAdmin (changes
in the validator list/updates to the consensus threshold) or RoninGatewayV2 (deposits,
withdrawals).

2.1.3. Deposits

Users can deposit ETH, ERC20, and ERC721 (NFTs) by sending transactions to
MainchainGatewayV2 and waiting for the deposit to be verified on Ronin. The validator will
listen to the event on mainchain and then acknowledge the deposit on Ronin. The gateway
should have a mapping between token contracts on Ethereum and on Ronin before the deposit
can take place.

For deposit there is no restriction on how large a deposit can be.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 11

2.1.4. Withdrawals

For withdrawal there are certain restrictions:

• Withdrawal tiers

There are 3 withdrawal tiers with different level of threshold required to withdraw. This is
what was proposed initially by the dev team:

Tier Withdrawal
Value

Threshold

Tier 1 - The normal withdrawal/deposit threshold

Tier 2 >= $1M All signatures from validators are required

Tier 3 >= $10M All signatures from validators are required, one additional
human review to unlock the fund

• Daily withdrawal limit

There will be another constraint on the number of tokens that can be withdrawn in a day.
They proposed to cap the value at $50M. Since withdrawal of Tier 3 already requires human
review, it will not be counted in daily withdrawal limit.

Normal withdrawal flow (tier 1 + tier 2). For tier 3, a separated human address will need

to unlock the fund.

2.1.5. Governance

The GovernanceAdmin contract is mainly responsible for the governance process via a
decentralized voting mechanism. Apart from the validator there is a list of governors, each
validator has a corresponding governor. The governors can vote for changes such as:
adding/removing validators, upgrading contracts, changing thresholds, etc. At any instance,

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 12

there will be at most one governance vote going on. The governor can be seen as a cold wallet
while the validator can be considered as a hot wallet.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 13

2.2. Architecture Security Review

In the section, we are going to summarize security assumptions of the architecture. Security
assumptions are trustworthy without verification or disputation. We also analyze current
security controls and gaps of the security assumptions. Finally, we offer recommendations to
improve the architecture security.

2.2.1. Security Assumptions

The architecture is secure as long as the number of malicious governance parties is unlikely
to be greater than G. G is the threshold in the GovernanceAdmin contract. The maximum
impact is the total loss of the project fund.

The user’s deposit is secure as long as the number of malicious validators is not greater than
N. N is the threshold in the Ronin Gateway contract. The impacts are:

1. Censorship. The deposit could be locked if malicious validators refuse to
acknowledge the assets.

2. Counterfeit. Attackers are able to mint counterfeit assets in Ronin. The attacks
could be hard to reverse if the counterfeit assets are withdrawn to mainnet.
Maximum impact depends on the withdrawal policies.

The user’s withdrawal is secure as long as the number of malicious validators is not greater
than X. X is the threshold in the Mainchain Gateway contract. The impacts are:

1. No >$50M unattended withdrawn per day.
2. >$50M withdrawal feasible if one human factor approves.
3. Censorship. No one is able to transfer assets if malicious validators refuse to

cooperate.
4. Counterfeit. Attacker able to fake the withdrawal events to transfer assets.

Maximum impact limited by the withdrawal rules.

In short there are 4 important security assumptions:

1. There is no risk of complete loss if the threshold of governance private keys are
secured.

2. There is no risk of complete loss if the human private key is secured.
3. The maximum impact of leak validator private keys is $50M if and only if the

community is able to detect and stop attacks in time.
4. Censorship is unlikely if the malicious validators are replaceable.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 14

2.2.2. Security Controls and Gaps

The security assumptions only worked if the smart contracts were correctly implemented
and proper out-of-chain security controls.

1. There is no risk of complete loss if the threshold of governance private keys are
secured.
We assume that all governance private keys should be protected by hardware wallets.
We assume that the threshold of governance voting should justify the risk of complete
loss.

2. There is no risk of complete loss if the human private key is secured
We assume that the human private key should be protected in hardware wallets. While
it is fairly low risk that all validators plus the private key are compromised; the role of
the special person is not clearly defined.

3. The maximum impact of leak validator private keys is $50M
We assume that the validator private keys should be protected by Key Management
Service to reduce the risk of leak keys. In the worst cases, enough validators
compromised could allow attackers to perform as many withdrawals as they want.
Interesting that they could choose to attack at the end of day when the counter is
reseted, then they could inflict a maximum $100M in a very short time. We assume
that the community is able to detect and respond quickly to limit the loss at $50M.

4. Censorship is unlikely
We assume that all governance private keys are available in case to vote out the
malicious validators.

2.2.3. Security Recommendation

Below are our recommendations for a more secure architecture and design of Ronin bridge
contract.

1. Multi-tier security policies for GovernanceAdmin for different tasks.

2. Delay in governance changes (24 hours for example) are also recommended to give
the community a chance to react.

3. The role of the special person who manually approves >$50M transactions should
be defined and have proper security controls around the role.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 15

4. Monitoring, monitoring and monitoring. The ultimate goal of the architecture is to
delay the attack and allow the community to detect and respond. If attackers perform
withdrawals undetected, they are able to inflict more than $50M loss (up to complete
loss of the funds)

Further risk control improvements could be considered

5. The current risk controls focus on delaying attackers (by hard cap) but unclear how to
react against them. We assume in this case the Ronin validators use
GovernanceAdmin to prevent further attacks. But the risk of slowness or absence of
validators could cause more damage. The incident response protocols should be
implemented by smart contracts which help quickly respond and limit loss.

6. Using Zero Knowledge Proof with the current risk control rules to improve the
security assumptions rather than blindly trust the validators.

7. Censorship security assumption could be improved by giving users an emergency
exit.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 16

2.3. Code Review Findings

During the code audit process, the audit team identified some vulnerabilities in the given
version of Ronin Bridge Smart Contracts. Sky Mavis team fixed the code, according to
Verichains's draft reports, in commit abe18fe7c333657297fa29409025dbb54852d204.

Title Severity Status

WithdrawalLimitation.sol - lastDateSynced is not updated for each
token

 Resolved

MainchainGatewayV2.sol - WITHDRAWAL_UNLOCKER_ROLE
should not be granted to validators

 Resolved

RoninValidator.sol - Incorrect handling can lead to duplicated
governor

 Resolved

RoninGatewayV2.sol - bulkAcknowledgeMainchainWithdrew can be
abused to prevent calling of requestWithdrawalSignatures

 Resolved

DEFAULT_ADMIN_ROLE should be granted to the GovernanceAdmin
contract

 Acknowledged

Table 2. Findings

2.3.1. WithdrawalLimitation.sol - lastDateSynced is not updated for each token

When withdrawing tokens via the _submitWithdrawal function, the _recordWithdrawal
function will be called to track the withdrawn tokens in a day. However, the lastDateSynced
variable is used for all tokens, so when a user withdraws token X, the lastDateSynced will be
updated to the current date. If another user withdraws token Y after that, the value of
lastSyncedWithdrawal[Y] will not be reset, so that the _reachedWithdrawalLimit function may
return true resulting in token Y that cannot be withdrawn.

function _recordWithdrawal(address _token, uint256 _quantity) internal virtual
{
 uint256 _currentDate = block.timestamp / 1 days;
 if (_currentDate > lastDateSynced) {
 lastDateSynced = _currentDate; // INCORRECT
 lastSyncedWithdrawal[_token] = _quantity;
 } else {
 lastSyncedWithdrawal[_token] += _quantity;

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 17

 }
}

function _reachedWithdrawalLimit(address _token, uint256 _quantity) internal view virtual
returns (bool) {
 if (_lockedWithdrawalRequest(_token, _quantity)) {
 return false;
 }

 uint256 _currentDate = block.timestamp / 1 days;
 if (_currentDate > lastDateSynced) {
 return dailyWithdrawalLimit[_token] <= _quantity;
 } else {
 return dailyWithdrawalLimit[_token] <= lastSyncedWithdrawal[_token] + _quantity; //
lastSyncedWithdrawal[_token] is not reset
 }
}

RECOMMENDATION

The lastDateSynced should be updated for each token, so we should convert this variable
from type uint256 to mapping(address => uint256).

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/7.

2.3.2. MainchainGatewayV2.sol - WITHDRAWAL_UNLOCKER_ROLE should not be
granted to validators

In the MainchainGatewayV2.test.ts testcase file, we notice that the
WITHDRAWAL_UNLOCKER_ROLE is granted to all validators. This means any validator can
call the unlockWithdrawal function.

validatorSet[network.name] = validators.map((v, i) => ({
 validator: v.address,
 governor: governors[i].address,
 weight: 1,
}));
accountSet['relayers'][network.name] = [relayer.address];
validatorThreshold[network.name] = { numerator: 1, denominator: validators.length };
gatewayThreshold[network.name] = { numerator: 1, denominator: validators.length };
mainchainMappedToken[network.name] = {
 mainchainTokens: [weth.address, erc721.address],

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 18

 roninTokens: [weth.address, erc721.address],
 fulSigThresholds: [10, 0], // tier-2 withdrawal
 lockedThresholds: [20, 0], // tier-3 withdrawal
 unlockFeePercentages: [100_000, 100_000], // 10%
 dailyWithdrawalLimits: [12, 0], // daily limit dont apply for tier-3 withdrawal
};
mainnetChainId[network.name] = [network.config.chainId!];
roninChainId[network.name] = 2020;
namedAddresses['weth'][network.name] = weth.address;
namedAddresses['roleSetter'][network.name] = deployer.address;
namedAddresses['governanceAdminOwner'][network.name] = deployer.address;
accountSet['withdrawalUnlockers'][network.name] = validators.map((v) => v.address);
// WITHDRAWAL_UNLOCKER_ROLE is granted for all validators

If a validator account is compromised, the attacker can observe all the tier-3 withdrawal
transactions and call the unlockWithdrawal function to collect the withdrawal fee. In a worse
situation, if all the validators are compromised, the attackers can easily use any validator
account to call the unlockWithdrawal function and easily bypass the additional human review
step. So, we can conclude that the security levels of tier-2 and tier-3 withdrawals are the same.

function unlockWithdrawal(Transfer.Receipt calldata _receipt) external
onlyRole(WITHDRAWAL_UNLOCKER_ROLE) {
 bytes32 _receiptHash = _receipt.hash();
 require(withdrawalHash[_receipt.id] == _receipt.hash(), "MainchainGatewayV2: invalid
receipt");
 require(withdrawalLocked[_receipt.id], "MainchainGatewayV2: query for approved
withdrawal");
 delete withdrawalLocked[_receipt.id];
 emit WithdrawalUnlocked(_receiptHash, _receipt);

 address _token = _receipt.mainchain.tokenAddr;
 if (_receipt.info.erc == Token.Standard.ERC20) {
 Token.Info memory _feeInfo = _receipt.info;
 _feeInfo.quantity = _computeFeePercentage(_receipt.info.quantity,
unlockFeePercentages[_token]);
 Token.Info memory _withdrawInfo = _receipt.info;
 _withdrawInfo.quantity = _receipt.info.quantity - _feeInfo.quantity;

 _feeInfo.handleAssetTransfer(payable(msg.sender), _token, wrappedNativeToken);
 _withdrawInfo.handleAssetTransfer(payable(_receipt.mainchain.addr), _token,
wrappedNativeToken);
 } else {
 _receipt.info.handleAssetTransfer(payable(_receipt.mainchain.addr), _token,
wrappedNativeToken);
 }

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 19

 emit Withdrew(_receiptHash, _receipt);
}

RECOMMENDATION

The WITHDRAWAL_UNLOCKER_ROLE must be granted for another account, which is
neither a validator nor governor.

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/15.

2.3.3. RoninValidator.sol - Incorrect handling can lead to duplicated governor

When updating a validator using the _updateValidator function, if the governor is changed,
it will be updated immediately without checking for duplication.

function _updateValidator(WeightedValidator memory _v) internal virtual {
 require(_v.weight > 0, "RoninValidator: invalid weight");

 uint256 _weight = _validatorWeight[_v.validator];
 if (_weight == 0) {
 revert(
 string(
 abi.encodePacked("RoninValidator: ", Strings.toHexString(uint160(_v.validator),
20), " is not a validator")
)
);
 }

 uint256 _count = _validators.length;
 for (uint256 _i = 0; _i < _count; _i++) {
 if (_validators[_i] == _v.validator) {
 _totalWeights -= _weight;
 _totalWeights += _v.weight;

 if (_governors[_i] != _v.governor) {
 require(_governorWeight[_v.governor] == 0, "fixed");
 delete _governorWeight[_governors[_i]];
 _governors[_i] = _v.governor; // GOVERNOR MAY BE DUPLICATED
 }

 _validatorWeight[_v.validator] = _v.weight;
 _governorWeight[_v.governor] = _v.weight;

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 20

 return;
 }
 }
}

RECOMMENDATION

The duplication check _governorWeight[_v.governor] > 0 should be required before updating
the new governor.

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/7.

2.3.4. RoninGatewayV2.sol - bulkAcknowledgeMainchainWithdrew can be abused to
prevent calling of requestWithdrawalSignatures

When a user submits a withdrawal request by calling requestWithdrawalFor function, he will
need to call the requestWithdrawalSignatures function after that to trigger transaction signing
from validators. However, a single validator may call the bulkAcknowledgeMainchainWithdrew
function before that to set the value of mainchainWithdrew[_withdrawalId] to true which will
prevent calling of requestWithdrawalSignatures function. In that case, user won't be able to
withdraw their tokens from mainchain.

function requestWithdrawalSignatures(uint256 _withdrawalId) external whenNotPaused
{
 require(!mainchainWithdrew[_withdrawalId], "RoninGatewayV2: withdrew on mainchain
already");
 Transfer.Receipt memory _receipt = withdrawal[_withdrawalId];
 require(_receipt.ronin.chainId == block.chainid, "RoninGatewayV2: query for invalid
withdrawal");
 emit WithdrawalSignaturesRequested(_receipt.hash(), _receipt);
}

function bulkAcknowledgeMainchainWithdrew(uint256[] calldata _withdrawalIds) external
{
 // This authorized method caller already
 _getValidatorWeight(msg.sender);

 uint256 _withdrawalId;
 for (uint256 _i; _i < _withdrawalIds.length; _i++) {

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 21

 _withdrawalId = _withdrawalIds[_i];
 require(!mainchainWithdrew[_withdrawalId], "RoninGatewayV2: withdrew on mainchain
already");

 mainchainWithdrew[_withdrawalId] = true;
 Transfer.Receipt memory _withdrawal = withdrawal[_withdrawalId];
 emit MainchainWithdrew(_withdrawal.hash(), _withdrawal);
 }
}

RECOMMENDATION

We can remove the !mainchainWithdrew[_withdrawalId] check inside the
requestWithdrawalSignatures function since one withdrawal receipt can only be used once in the
MainchainGatewayV2 contract.

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/15.

2.3.5. DEFAULT_ADMIN_ROLE should be granted to the GovernanceAdmin contract

In this current implementation, the DEFAULT_ADMIN_ROLE of the MainchainGatewayV2
and RoninGatewayV2 contracts is granted to the accounts that can be controlled by just a single
user. An account with the DEFAULT_ADMIN_ROLE can manage the
WITHDRAWAL_UNLOCKER_ROLE in the MainchainGatewayV2, and the
WITHDRAWAL_MIGRATOR role in the RoninGatewayV2 contract. For example, an account
with the DEFAULT_ADMIN_ROLE can assign another user as a withdrawal unlocker who can
approve tier-3 transactions and also collect the transaction fees.

RECOMMENDATION

The DEFAULT_ADMIN_ROLE of the MainchainGatewayV2 and RoninGatewayV2 contracts
should be set to the address of the GovernanceAmin contract. That way, some important actions
like granting the WITHDRAWAL_UNLOCKER_ROLE or WITHDRAWAL_MIGRATOR role
will only be performed via the voting process.

UPDATES

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 22

• May 17, 2022: This issue has been acknowledged by Sky Mavis team.

2.4. Additional notes and recommendations

2.4.1. Ballot.sol - Governor cannot see proposal data when signing the ballot

When signing the ballot using EIP-712, the signers can only see the proposalHash and
support values. Because of that, they still cannot see the detail of the proposal they are signing
for. So, this approach will not take advantage of typed structure data hashing and signing
defined by EIP-712.

library Ballot {
 using ECDSA for bytes32;

 enum VoteType {
 For,
 Against
 }

 // keccak256("Ballot(bytes32 proposalHash,uint8 support)");
 bytes32 public constant BALLOT_TYPEHASH =
0xd900570327c4c0df8dd6bdd522b7da7e39145dd049d2fd4602276adcd511e3c2;

 function hash(bytes32 _proposalHash, VoteType _support) internal pure returns (bytes32)
{
 return keccak256(abi.encode(BALLOT_TYPEHASH, _proposalHash, _support));
 }
}

RECOMMENDATION

The ballot type hash should be changed to keccak256("Ballot(ProposalDetail proposal,uint8
support)ProposalDetail(uint256 nonce,uint256 chainId,address[] targets,uint256[] values,bytes[]
calldatas)") (the hash function should also be updated accordingly).

UPDATES

• May 17, 2022: This issue has been acknowledged by Sky Mavis team.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 23

2.4.2. MainchainGatewayV2.test.ts - Using wrong comparison operator

In the MainchainGatewayV2 testcases file, the network.name check is using the wrong
comparison operator =. It should be changed to ==.

describe('Mainchain Gateway V2 test', () => {
 before(async () => {
 let signers: SignerWithAddress[];
 [deployer, normalUser, relayer, ...signers] = await ethers.getSigners();
 validators = signers.slice(0, signers.length / 2);
 governors = signers.slice(signers.length / 2);
 if (validators.length > governors.length) {
 validators.pop();
 } else if (validators.length < governors.length) {
 governors.pop();
 }

 weth = await new WETH__factory(deployer).deploy();
 erc20 = await new ERC20Mintable__factory(deployer).deploy();
 await erc20.addMinters([deployer.address]);
 erc721 = await new MockERC721__factory(deployer).deploy('ERC721', 'ERC721', '');

 if ((network.name = Network.Hardhat)) { // WRONG COMPARISON OPERATOR
 validatorSet[network.name] = validators.map((v, i) => ({
 validator: v.address,
 governor: governors[i].address,
 weight: 1,
 }));
 }
 // ...
 })
})

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/7.

2.4.3. MainchainGatewayV2.test.ts - Wrong testcase description

In the MainchainGatewayV2 testcases file, the description is wrong for the following
testcase.

it('Should be able to deposit empty amount', async () => {
 await expect(

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 24

 normalUser.sendTransaction({
 to: gateway.address,
 value: 0,
 })
).revertedWith('Token: invalid info');
 await expect(
 gateway.connect(normalUser).requestDepositFor({
 recipientAddr: deployer.address,
 tokenAddr: weth.address,
 info: { ...info, quantity: 0 },
 })
).revertedWith('Token: invalid info');
});

RECOMMENDATION

The testcase description should be changed to Should not be able to deposit empty amount.

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/7.

2.4.4. MainchainGatewayV2.sol - Withdrawal limit check for ERC721 should be skipped
for gas saving

In the _submitWithdrawal function, there is a required check
!_reachedWithdrawalLimit(_tokenAddr, _quantity) that is used to check the withdrawal limit of
the ERC20 tokens. In case of ERC721 token withdrawal, we should skip this limit check for
gas-saving.

function _submitWithdrawal(Transfer.Receipt calldata _receipt, Signature[] memory
_signatures)
 internal
 virtual
 returns (bool _locked)
{
 uint256 _id = _receipt.id;
 uint256 _quantity = _receipt.info.quantity;
 address _tokenAddr = _receipt.mainchain.tokenAddr;

 _receipt.info.validate();
 require(_receipt.kind == Transfer.Kind.Withdrawal, "MainchainGatewayV2: invalid receipt
kind");
 require(_receipt.mainchain.chainId == block.chainid, "MainchainGatewayV2: invalid chain

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 25

id");
 require(withdrawalHash[_id] == bytes32(0), "MainchainGatewayV2: query for processed
withdrawal");
 require(!_reachedWithdrawalLimit(_tokenAddr, _quantity), "MainchainGatewayV2: reached
daily withdrawal limit"); // SKIP FOR ERC721
 // ...
}

RECOMMENDATION

The _submitWithdrawal function can be fixed as below.

function _submitWithdrawal(Transfer.Receipt calldata _receipt, Signature[] memory
_signatures)
 internal
 virtual
 returns (bool _locked)
{
 uint256 _id = _receipt.id;
 uint256 _quantity = _receipt.info.quantity;
 address _tokenAddr = _receipt.mainchain.tokenAddr;

 _receipt.info.validate();
 require(_receipt.kind == Transfer.Kind.Withdrawal, "MainchainGatewayV 2: invalid
receipt kind");
 require(_receipt.mainchain.chainId == block.chainid, "MainchainGatewayV2: invalid chain
id");
 require(withdrawalHash[_id] == bytes32(0), "MainchainGatewayV2: query for processed
withdrawal");
 require(_receipt.info.erc == Token.Standard.ERC721 ||
!_reachedWithdrawalLimit(_tokenAddr, _quantity), "MainchainGatewayV2: reached daily
withdrawal limit"); // FIXED
 // ...
}

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/15.

2.4.5. MainchainGatewayV2.test.ts - BigNumber cannot be added to JS number directly

While reviewing the MainchainGatewayV2.test.ts testcase file, we notice the following code
pattern (defaultWithdrawalReceipt.info.quantity as number) + 1. In this case, the type of
defaultWithdrawalReceipt.info.quantity is BigNumber which will yield the wrong result when

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 26

being added to JS numbers. The result of withdrawalReceipt.info.quantity in this testcase might
not be important, however, we still highlight this issue here to prevent similar future mistakes.

it('Should not be able to withdraw with the signatures the other receipt', async () =>
{
 const withdrawalReceipt: ReceiptStruct = {
 ...defaultWithdrawalReceipt,
 id: BigNumber.from(1),
 info: {
 ...defaultWithdrawalReceipt.info,
 quantity: (defaultWithdrawalReceipt.info.quantity as number) + 1,
 },
 };
 await expect(gateway.submitWithdrawal(withdrawalReceipt, signatures)).revertedWith(
 'MainchainGatewayV2: query for insufficient vote weight'
);
});

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/15.

2.4.6. Governance.sol - Missing length check for _supports and _signatures arrays

In the _relayVotesBySignatures function, the length of _supports and _signatures arrays should
be checked before processing.

function _relayVotesBySignatures(
 Proposal.ProposalDetail memory _proposal,
 Ballot.VoteType[] calldata _supports,
 Signature[] calldata _signatures,
 bytes32 _forDigest,
 bytes32 _againstDigest
) internal {
 uint256 _forVoteCount;
 uint256 _againstVoteCount;
 address[] memory _forVoteSigners = new address[](_signatures.length);
 address[] memory _againstVoteSigners = new address[](_signatures.length);

 {
 address _signer;
 address _lastSigner;

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 27

 Ballot.VoteType _support;
 Signature memory _sig;

 for (uint256 _i; _i < _signatures.length; _i++) {
 _sig = _signatures[_i];
 _support = _supports[_i];
 // ...
 }
 // ...
 }
 // ...
}

RECOMMENDATION

The condition _supports.length == _signatures.length && _signatures.length > 0 should be
checked before processing.

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/15.

2.4.7. Token.sol - Waste of gas when trying to send native tokens two times

In the handleAssetTransfer function, the contract tries to call _to.send(0) to check if the
recipient can receive native tokens. And then the actual amount will be sent with
_to.transfer(_info.quantity), which is quite gas-consuming.

function handleAssetTransfer(
 Info memory _info,
 address payable _to,
 address _token,
 IWETH _wrappedNativeToken
) internal {
 bool _success;
 if (_token == address(_wrappedNativeToken)) {
 // Check whether the `_to` address receives native token
 if (_to.send(0)) { // WASTE OF GAS
 _to.transfer(_info.quantity);
 } else {
 // Convert to wrapped token before sending them
 _wrappedNativeToken.deposit{ value: _info.quantity }();
 transfer(_info, _to, _token);

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 28

 }
 } // ...
}

RECOMMENDATION

These steps can be optimized with just a single statement _to.send(_info.quantity) as below.

function handleAssetTransfer(
 Info memory _info,
 address payable _to,
 address _token,
 IWETH _wrappedNativeToken
) internal {
 bool _success;
 if (_token == address(_wrappedNativeToken)) {
 // Check whether the `_to` address receives native token
 if (!_to.send(_info.quantity)) { // FIXED
 // Convert to wrapped token before sending them
 _wrappedNativeToken.deposit{ value: _info.quantity }();
 transfer(_info, _to, _token);
 }
 } // ...
}

UPDATES

• May 17, 2022: This issue has been acknowledged and fixed by Sky Mavis team in
pull request https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/15.

2.4.8. WithdrawalLimitation.sol - fullSigThreshold and lockedThreshold are not consistent
with the description

Base on the provided documentation of Ronin Bridge, we get the following table:

Tier Withdrawal
Value

Threshold

Tier 1 - The normal withdrawal/deposit threshold

Tier 2 > $1M All signatures from validators are required

Tier 3 > $10M All signatures from validators are required, one additional
human review to unlock the fund

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 29

The withdrawal value is checked to be greater than a specified threshold. However, we
notice that the withdrawal tier is changed when the withdrawal values are greater than or
equal to the specified thresholds. Below are some usages of these thresholds in the code:

function _computeMinVoteWeight(
 Token.Standard _erc,
 address _token,
 uint256 _quantity,
 IWeightedValidator _validatorContract
) internal virtual returns (uint256 _weight, bool _locked) {
 uint256 _totalWeights = _validatorContract.totalWeights();
 _weight = _minimumVoteWeight(_totalWeights);
 if (_erc == Token.Standard.ERC20) {
 if (fullSigThreshold[_token] <= _quantity) { // `<=` IS USED
 _weight = _totalWeights;
 }
 _locked = _lockedWithdrawalRequest(_token, _quantity);
 }
}

function _lockedWithdrawalRequest(address _token, uint256 _quantity) internal view virtual
returns (bool) {
 return lockedThreshold[_token] <= _quantity; // `<=` IS USED
}

UPDATES

• May 17, 2022: The documentation has been updated by Sky Mavis team in pull request
https://github.com/axieinfinity/ronin-smart-contracts-v2/pull/15.

Report for Sky Mavis

Security Audit – Ronin Bridge Smart Contracts

Version: 1.1 - Public Report

Date: Jun 28, 2022

Page 30

3. VERSION HISTORY

Version Date Status/Change Created by

1.0 May 17, 2022 Private Report Verichains Lab

1.1 Jun 28, 2022 Public Report Verichains Lab

Table 3. Report versions history

