
Security Assessment

Ronin DPoS Contracts
CertiK Verified on Mar 30th, 2023

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Resolved
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

2 Medium 2 Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 4 Resolved

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

7 Informational 4 Resolved, 3 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY RONIN DPOS CONTRACTS

CertiK Verified on Mar 30th, 2023

Ronin DPoS Contracts

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

GameFi

ECOSYSTEM

Ronin

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 03/30/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/axieinfinity/ronin-dpos-contracts/

...View All

COMMITS
1d3f5e3c1de471edd6e8b4ea15167130f40e3d90

450241f8e4fa2be33c9f14ca6dca57f12af0e15a

66903dbcdfb64964abe16994b4b2e7d5d9057ded

...View All

14
Total Findings

11
Resolved

0
Mitigated

0
Partially Resolved

3
Acknowledged

0
Declined

0
Unresolved

https://github.com/axieinfinity/ronin-dpos-contracts/

TABLE OF CONTENTS RONIN DPOS CONTRACTS

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Overview

Workflow Graph
Ronin Chain

Mainchains

External Dependencies

Decentralization Efforts

Description

Recommendations
Short Term:

Long Term:

Permanent:

Findings

CEU-01 : Validators May Have The Wrong Block Producer Status

CGU-01 : Possible To Create A Proposal That Cannot Be Voted On

ROI-01 : Possible To Acquire Credit Score While In Maintenance

BOP-01 : For Loop Should Not Return Early When Casting Vote For Bridge Operators

DSU-01 : Possible For A Pool Admin to Delegate To A Different Pool

PAC-01 : Potential Out-dated Openzeppelin Library Usage

ROR-01 : Lack of Check When Updating Trusted Organization

CEH-01 : Modifier `oncePerEpoch` Invalid on First Epoch

CON-01 : Incompatibility With Deflationary Tokens

CSI-01 : Potential DoS Attack on Candidate Application

ROG-01 : Potential Reentrancy Attack

ROO-01 : Purpose of Voting For Bridge Operators

SLD-01 : Implementation of Double Sign Slashing

SUU-01 : Lack of Check When Slashing for Unavailability

TABLE OF CONTENTS RONIN DPOS CONTRACTS

Appendix

Disclaimer

TABLE OF CONTENTS RONIN DPOS CONTRACTS

CODEBASE RONIN DPOS CONTRACTS

Repository

https://github.com/axieinfinity/ronin-dpos-contracts/

Commit

1d3f5e3c1de471edd6e8b4ea15167130f40e3d90

450241f8e4fa2be33c9f14ca6dca57f12af0e15a

66903dbcdfb64964abe16994b4b2e7d5d9057ded

CODEBASE RONIN DPOS CONTRACTS

https://github.com/axieinfinity/ronin-dpos-contracts/

AUDIT SCOPE RONIN DPOS CONTRACTS

116 files audited 3 files with Acknowledged findings 9 files with Resolved findings 104 files without findings

ID File SHA256 Checksum

MAA contracts/mainchain/MainchainGatewayV2.sol
3ef6b44db6f8b6be9f800baaa418e252f081a8

6202a7bcf706ca2468ee95a55e

CSI contracts/ronin/staking/CandidateStaking.sol
5e5205ac23a69f07f5f797440d2e866db3e3e8

91e315906d103168d287c02c6a

ROG contracts/ronin/RoninGatewayV2.sol
bb7242884766e14a0af68e3d6b6e3a2f28226

cab4b078756d96435db3460ed80

BOP
contracts/extensions/isolated-governance/bridge-op

erator-governance/BOsGovernanceProposal.sol

f28114a9bd80154eb9719c35a7ede1a0ef269

2f8f37ee6b6b66d187c8706cf69

CGU
contracts/extensions/sequential-governance/CoreG

overnance.sol

67388300ec0a814f2eed95d131eaf1a9b4cdf1

5aa65b4c8a8e0ae1c872428602

ROR
contracts/multi-chains/RoninTrustedOrganization.so

l

0f0fb5408c85c59905f2a6e6e5816dfe943671

0651d42d213cbb6fb14b416378

CST contracts/ronin/slash-indicator/CreditScore.sol
319de9dd538cffc728931dc6e2b194264ab8b5

837b6b3f5b904d41543a3ce69e

SLD contracts/ronin/slash-indicator/SlashDoubleSign.sol
f73238eb26a05ac996fd1cef5b0201a0c80a98

130ebe73d0ebcc6686f0699b8a

SUU
contracts/ronin/slash-indicator/SlashUnavailability.s

ol

57150c76e6efbfa5089a78973d4ff40d7954c0

ecc6708966020a34339de20a31

DSU contracts/ronin/staking/DelegatorStaking.sol
25cc2eb6e53129043ae4cbb250e5d78c86823

37f5b8867b94dda83d25e29d870

CEU contracts/ronin/validator/CoinbaseExecution.sol
302d23e0dbc32bed81200bb1d5cf6ca51f408

37d4489738963c73823378b3794

ROO contracts/ronin/RoninGovernanceAdmin.sol
6c4d3186f26893665af85049c05e9758e9f586

0b350d5c77f69261f8212452e3

HAS
contracts/extensions/collections/HasBridgeContrac

t.sol

c37c3558f0a0d5222c1ecfb331ace680432352

6fbee4757d3661f884bbdbd3c2

HTC
contracts/extensions/collections/HasBridgeTracking

Contract.sol

3c06023e75e4872122f2a7c1148f89e1c5772

4e4ae088a2204d4f573408ffb84

AUDIT SCOPE RONIN DPOS CONTRACTS

ID File SHA256 Checksum

HAM
contracts/extensions/collections/HasMaintenanceC

ontract.sol

af69bf4bad3842b31ac9a588ee190b71f0b0c7

6145b93d2ed8994ce66b2c04ae

HAP
contracts/extensions/collections/HasProxyAdmin.so

l

24aef138712d0d2f8d18da3ac5fd2b873d10ce

60eb845ffdcb0768fb7b452580

HRA
contracts/extensions/collections/HasRoninGoverna

nceAdminContract.sol

1374a14ceaa37995b1fa989530a3cbc507299

e583951a8c3404d232a1d0e9d20

HRO
contracts/extensions/collections/HasRoninTrustedO

rganizationContract.sol

209b982c945157b632c779f171199e0d44096

cf5131eb0e4b9bedc62da1fce48

HIC
contracts/extensions/collections/HasSlashIndicator

Contract.sol

7ae0efd54c7729b994c4f3fbefda12feab4d7d7

b9d23f0416cff7805284cbfd4

HAT
contracts/extensions/collections/HasStakingContrac

t.sol

a13a19fdbbc7edfc18baca7b8e1599682fff729

9761cb979ddb53da529416d77

SVC
contracts/extensions/collections/HasStakingVesting

Contract.sol

7ef73a03d53bf83b6c856ee54cb345219bb4b

09ccff34364d2fbe9d52287836b

HAV
contracts/extensions/collections/HasValidatorContra

ct.sol

a3f3f315984bb9d48b767fb8e44c6212fa72ad

51ecb0c01ccb062a57eb87f99a

PCH
contracts/extensions/consumers/PercentageConsu

mer.sol

8fcdff8e48c8919da5ae9455b104b8ab1b2685

7c9f4f23239cd455ee875854f2

FOW contracts/extensions/forwarder/Forwarder.sol
ee774fa6269dea2cd157a4a60ff00d2f68943fb

9943cd643669bd753a3b245ec

BGR
contracts/extensions/isolated-governance/bridge-op

erator-governance/BOsGovernanceRelay.sol

eba8de12ff0fa9ada12e76823709e97f3f83a20

1a89fb4bc25ff6b08a9b5607e

IGU
contracts/extensions/isolated-governance/IsolatedG

overnance.sol

98ded14354f2b3096973b8770d75d765e56cb

1be6f1b1be8ed84ac72d371d3d3

GPT
contracts/extensions/sequential-governance/Gover

nanceProposal.sol

21f29753dbd276a9ce551d249cc6e1894e71e

32cdf19f6d8eeb24398eed6bb4f

GRU
contracts/extensions/sequential-governance/Gover

nanceRelay.sol

e8efb1ed6ec5e4435b7dce6fd43cca9b50bccc

3ad34baa0b7a6a83b6fccd29c1

GVU contracts/extensions/GatewayV2.sol
d7ee4e26682d0f3567920c25c5c3a2bf4d0f2ff

47b8335a3bd7411c87dbb6bd1

AUDIT SCOPE RONIN DPOS CONTRACTS

ID File SHA256 Checksum

GAU contracts/extensions/GovernanceAdmin.sol
0ae4fb0e8ce9b53d04f7baff93e89b717613a4

e2fc59b12fc1545e483571debf

MWU contracts/extensions/MinimumWithdrawal.sol
9202954d5720d1c60529d7ace13e03b2fae85

bbd889cd5c1e7833ff96b542a3a

ROH contracts/extensions/RONTransferHelper.sol
628949ee5db8a7204dd403991fe7965ab7e34

480879ff0eb8b1b862e46fb7b5f

TUV
contracts/extensions/TransparentUpgradeableProx

yV2.sol

c0a99344bad819e90cd406994305e1bd8a31

7abad8929d0db25fa9205d4c11cf

WLU contracts/extensions/WithdrawalLimitation.sol
461882adc2b000b39b01232195ba651ffac02

3fdd1af58c134b6657bdab1a8c8

IBC
contracts/interfaces/collections/IHasBridgeContract.

sol

d67ce4511e4f56d1baaa8cbb2fe707123660c

781ea5455ebec0ce72c84f3cba8

ITC
contracts/interfaces/collections/IHasBridgeTracking

Contract.sol

6e2bbeee2bb8017d24901a40753c5655327d

6e8c79675482345ea573ddd23f1a

IHA contracts/interfaces/collections/IHasContract.sol
447ed3c6dd62cd1212e69536041d41e93277

df9045e37994deab80a237c6112d

IMC
contracts/interfaces/collections/IHasMaintenanceCo

ntract.sol

7e34f130b4bfd91483e8e357ead737cd0a99cf

00a8dd60d28bf9c5c1d6ec5692

IHG
contracts/interfaces/collections/IHasRoninGovernan

ceAdminContract.sol

41cc0e79e822fb5c1d7c73c4cfd8250338e802

61ff3bfb24ac6e5b50f3d6959d

ITO
contracts/interfaces/collections/IHasRoninTrustedO

rganizationContract.sol

623e9462083a27a0aa419ed783a4f9c1db5ad

fecefe7c15b72ecaa9c939bd99d

IHI
contracts/interfaces/collections/IHasSlashIndicator

Contract.sol

fdc013247a2c7ae892cc500d770c83cd458d0

0ff5da9a24b3d9fa4016357a2c7

ISC
contracts/interfaces/collections/IHasStakingContrac

t.sol

a461101cd1409a2447198570cc62e989d039

512bc5ce5d4c3825909e47329189

IHK
contracts/interfaces/collections/IHasStakingVesting

Contract.sol

49c81dfd36d9189124adbec32dd79a7ab2fbd

70e69b10797b9aea8bb28451428

IHL
contracts/interfaces/collections/IHasValidatorContra

ct.sol

12e2e9908507456618424a4f9b7f990cfb4bce

41a3d2e519f57eea47fb994c7f

AUDIT SCOPE RONIN DPOS CONTRACTS

ID File SHA256 Checksum

CHA
contracts/interfaces/consumers/ChainTypeConsum

er.sol

cd3480f51cb2e431ce59f9b75a8c570780c3ec

f167bf01bd4bf27f2d6424fe7d

MAP
contracts/interfaces/consumers/MappedTokenCons

umer.sol

6bfc25eb193416e1dcdd81457690a2cce58a2

22b7f3847759b054bf0854a8e94

PER
contracts/interfaces/consumers/PeriodWrapperCon

sumer.sol

cc0bbd5df9805828fe2bade53c970a9291877

45f10c340139e3ee0c6ad4a9ad3

SCU
contracts/interfaces/consumers/SignatureConsume

r.sol

f9f8a78e55b9de1c5627e5be695e004c7bc29

a3e387358e5a25d430550791052

VOT
contracts/interfaces/consumers/VoteStatusConsum

er.sol

a638606fd88078d3bb58da5f2086ae514d293

b6d68b7a3d599d8582041d8780f

WEI
contracts/interfaces/consumers/WeightedAddressC

onsumer.sol

e6a0f5c53db2d7a2da81ff00a1ae7e74e39542

ce36f92cdafd8978b55bca0015

IBE contracts/interfaces/slash-indicator/IBaseSlash.sol
4b9fe9be49a6decef2fea992c159bdd961d93b

54ed0fa5313e3cd133ce50f2b5

ICR contracts/interfaces/slash-indicator/ICreditScore.sol
7aec5a9092bd61e1dc1ffb15a57671f1a7a43d

a2a21fb387f2b225ce0e3bc09a

IBO
contracts/interfaces/slash-indicator/ISlashBridgeOp

erator.sol

2d9704afeb480b0b17d2ab45905ac8fe3ccd1

739cdac70b99540b52ec6b56cf9

ISA
contracts/interfaces/slash-indicator/ISlashBridgeVot

ing.sol

c85c78e8ab1bd95cf9fc987b6d4cdd1a463f81f

8c12d6c37cdb0e46a8750bd95

ISS
contracts/interfaces/slash-indicator/ISlashDoubleSi

gn.sol

232615a9055f28b734adacc9281f8ee02c602c

6d1c815ec0ac5dfb2b3a8aa0b6

ISN
contracts/interfaces/slash-indicator/ISlashIndicator.

sol

f0ed57caebf615bcb5cdeb9fedb2bfe8df3922fc

7c4a677f757502574ebcc8e2

ISY
contracts/interfaces/slash-indicator/ISlashUnavailab

ility.sol

ba3009d06cd95f73e3ed028a54c85113018f0

371094c9d439aec00d0f0fa48e2

IBK contracts/interfaces/staking/IBaseStaking.sol
0f32e3cdda85f7352d608952cf9172988932ec

eb7200e51d519c2788c83406d6

ICN contracts/interfaces/staking/ICandidateStaking.sol
b19d68f731699c633892c492db6bdb4d024ce

ec9d4f91dc001c41eeb3bdda392

AUDIT SCOPE RONIN DPOS CONTRACTS

ID File SHA256 Checksum

IDE contracts/interfaces/staking/IDelegatorStaking.sol
1c554e36645712492bdb4943ba96339ca8c4

edf35070f0307b9d84758891b44d

IRE contracts/interfaces/staking/IRewardPool.sol
d7697ba2d37e2d3d3b8baee13b517f19ae75c

06a584e79cf054ca973806c560e

ISG contracts/interfaces/staking/IStaking.sol
267c20f73306320453e15c9b0e4cfc9c734baa

294d849bfb4ae938893a7d4b35

ICF
contracts/interfaces/validator/info-fragments/IComm

onInfo.sol

af5480dbd2f9a70b0f1e3b26591cbb61d89aee

83039633e3b319a4bcda6edb53

IJA
contracts/interfaces/validator/info-fragments/IJailing

Info.sol

fbb94c4252b273f8a4ec7304fd92976ea45382

33850822c6ab937b47b28ff5ca

ITM
contracts/interfaces/validator/info-fragments/ITiming

Info.sol

33e7424251f7434cdfeedef7049baaf7053280

5bc7df6aeccb0be87fd88d5bb0

IVA
contracts/interfaces/validator/info-fragments/IValidat

orInfo.sol

51a7299d3f9b11c332d53abcc902a80ac06ee

4f77ef3b8699c6d4782711cd88b

ICD
contracts/interfaces/validator/ICandidateManager.s

ol

db34fe1adc8c5dd4f3ca9746c4592f3beb0f5ed

0bce2079739547be481afcaaa

ICO
contracts/interfaces/validator/ICoinbaseExecution.s

ol

193f7856e8dd785cc5b8d7e6884cfa67fb97c9

818e927f9a0a7ed91751460d02

IEE contracts/interfaces/validator/IEmergencyExit.sol
9d6f2745132f95df3a9f2a3e0853f68067ae1f8

753eaa6451e3f2ae7e11ef21b

IRS contracts/interfaces/validator/IRoninValidatorSet.sol
a53ef8ef2107b231c8359256e71772fbc44d80

8846590901e18adb9d818e7e68

ISX
contracts/interfaces/validator/ISlashingExecution.so

l

e10beb4c46978b2b494a516286bdc8e53e5d

af361576ef65346a86b29e4ddfe5

IBU contracts/interfaces/IBridge.sol
b64fcf72842ebfcf6207c23c2fd0622953e0537

15b0a8747a07e8ce24d20b4da

IBR contracts/interfaces/IBridgeTracking.sol
22fea89e0c031f6a3611342d46e5f24668aadf

a27a172a67ff9d0176af37f996

IEM contracts/interfaces/IERC20Mintable.sol
4795937cb211a75c6c525b06508e7f57d73e7

bbc24d6b4e36cb3d26b2c19aea5

IRC contracts/interfaces/IERC721Mintable.sol
a93c33101084deef5fca264a4dff73f05cce8ca

33519648d2128596b62946214

AUDIT SCOPE RONIN DPOS CONTRACTS

ID File SHA256 Checksum

IMV contracts/interfaces/IMainchainGatewayV2.sol
95cad7f21180621b0a1a7b40d8ba64c232303

dd87ae88ec839c3301427bdafa7

IMU contracts/interfaces/IMaintenance.sol
99c4de034df72dd8c5f4bfec542dba50329d56

d716fa36d3cc1e2140ff2d144d

IQU contracts/interfaces/IQuorum.sol
5e12f2f1134550dfe70bc1f2503ff11fb9181c6b

874f29bc262393e01c5daa12

IGV contracts/interfaces/IRoninGatewayV2.sol
c995cf52fb48ece798bf456d568b8ff75f8ad003

66d59c49a5ff9bd513a68dce

IGA contracts/interfaces/IRoninGovernanceAdmin.sol
d4d16a973e9651dcc2832c0f3a0efeed3067b

9764174c2fe6dbe0dd653139dbb

IRO contracts/interfaces/IRoninTrustedOrganization.sol
1c16884f149b8f135ee2d0bf2a1ee91fda236b

206e1345e76a8957fac69943f5

IST contracts/interfaces/IStakingVesting.sol
abf3c4577855301d11c77f9b0b9eeaf7733dee

127149d9765f95a41741121e52

IWT contracts/interfaces/IWETH.sol
688a73efabe2972c17647f4daba15e1e55d59

aa9a5d267cf7c1f2aca26dddfda

ADD contracts/libraries/AddressArrayUtils.sol
017df09a2ed4f948df75f8cf186d1f67b67ce02

48edcf7c4b8190d37ef6422df

BAO contracts/libraries/Ballot.sol
ebaac64bd83794d8051c5e3067c04320a240

55e14dd5454a17dba7cb117ad23b

BRD contracts/libraries/BridgeOperatorsBallot.sol
cfe83bba024c8da96c22cdd73a52979ab83e9

83777d0b8e89b99385e59a75ff0

EEB contracts/libraries/EmergencyExitBallot.sol
1ce876de19627afcd26b9feb59b2e1a07cc533

ac202d46025935a582cfa246c7

EFU contracts/libraries/EnumFlags.sol
9362dea4679b4cbd5432321576596fbce9a8b

3914088b02fc6d3da70f4f4499c

GPH contracts/libraries/GlobalProposal.sol
ddcfeb1b84f0c85c3e4ef99a7d221307513704

62f27c452de4bc73e51791c018

MAH contracts/libraries/Math.sol
76f4e16dca3d869646724cee16835aac6b1ff0

92451fa450889b9fac9734ad98

PRP contracts/libraries/Proposal.sol
3c0e994ce0418fab258fdf8ab75f33a74819d4

ce5a7ce48f4b5df0c3542317a5

TOE contracts/libraries/Token.sol
acfe38ceee8be89581c8689b51d0e879daedff

91534697825f4071a22322b2f1

AUDIT SCOPE RONIN DPOS CONTRACTS

ID File SHA256 Checksum

TRN contracts/libraries/Transfer.sol
86ba568b7e2d0c28b57e319423db1291fa540

9a0408e755978f78fd6ebdceb53

MAG
contracts/mainchain/MainchainGovernanceAdmin.s

ol

4c833c73e05a428dfb72d610f5da6e35f2f07e

5fde3e06e89acf31488b5945ff

PCU
contracts/precompile-usages/PCUPickValidatorSet.

sol

579d6e69c8bc09054c5a4af6ddf56890ef0e12

53398de08893ba96a337d374a6

PCS contracts/precompile-usages/PCUSortValidators.sol
f62c809c91f551668746a4733a39db6c5fa6f1

8ffdd9bf3ca54f8c47d4963a5e

PCV
contracts/precompile-usages/PCUValidateDoubleSi

gn.sol

933b0fd4bbe82bb5c4fe3f4fb605ab70c87e2b

4ebca87e7f9f435212fe5b492b

PUB
contracts/precompile-usages/PrecompiledUsage.so

l

5c1345da8a30a90045db5836d3bfbf0d85865

ebab907a9e3ecdf9c7d92e2f5c8

SLB
contracts/ronin/slash-indicator/SlashBridgeOperato

r.sol

90c3439fe64d3ccddaaeb1f4afce7c6aa023b9

d5c1f1df41866140e6007b7018

SLR
contracts/ronin/slash-indicator/SlashBridgeVoting.s

ol

885ce172503383939c093b7f181170c383a03

0414fb6b6c72f5ad1b376bb6e22

SIU contracts/ronin/slash-indicator/SlashIndicator.sol
162e5c7c6c23eec5828a9abc270f5dd86d86ff

9e371590983786cf57afc049c6

BSU contracts/ronin/staking/BaseStaking.sol
6487ef7cf74b0b05d0257d0892f21c50a3a92e

77f83b0e1ac612b774d21e2ea6

RCU contracts/ronin/staking/RewardCalculation.sol
9e34358a40fdb756904eb643b0c01b798e8a0

14e92e43ff20743e650da3eb968

STS contracts/ronin/staking/Staking.sol
5f918705b3652214c601d114c74df163d9890

62a5e73a9006e71843ab02b9ad7

CSG
contracts/ronin/validator/storage-fragments/Commo

nStorage.sol

bdaaa0a68958b0ba074f8f875978bc1e7595d

c68fea134a10cfcc17ba4bcf655

JSU
contracts/ronin/validator/storage-fragments/JailingS

torage.sol

0d54da71b1a35661c20ca8f675848e70e1468

a67714ca01883ecd39ad7acacac

TSU
contracts/ronin/validator/storage-fragments/TimingS

torage.sol

60b9d0aa8843f53a3469ee031d11994af4811

4f8a8a9d12ba2ce9066c77ed7f4

VAT
contracts/ronin/validator/storage-fragments/Validato

rInfoStorage.sol

f8ae57c608f76d1cdad3467ea972dafc5b60f4

e28e58dff52fe0715650cfa162

AUDIT SCOPE RONIN DPOS CONTRACTS

ID File SHA256 Checksum

CMU contracts/ronin/validator/CandidateManager.sol
0422484b10fe6f868813e68d021abfab6b37c1

e84ac69c51333cabe6d86784c9

EEU contracts/ronin/validator/EmergencyExit.sol
3d79b59d6e862470197ddeb816bcba60007e

6cedecdcc17177a80f1c1d5b2f28

ROV contracts/ronin/validator/RoninValidatorSet.sol
532150628f3e0619971f4e658f49c374e04231

053f32b727879ceff92d3abe69

SEH contracts/ronin/validator/SlashingExecution.sol
1f1e4a8ebc5b56635e8b97ccc46cb2a7a2595

148b071f5e2125b04142a0f3870

BTU contracts/ronin/BridgeTracking.sol
1a975f5db1d848bd82a6efbc0efe9d557e0712

899d37aa257682f4e3d5f693d2

MAE contracts/ronin/Maintenance.sol
8884f3280ac08276ebd9575a3345f6c4de74a

453d932582c100987230ed2f65c

SVU contracts/ronin/StakingVesting.sol
7092cd13a6495f081c456db96df3da9308071

97386fd4a50331f1c10b5d7c08f

VFB contracts/ronin/VaultForwarder.sol
4dfc9eb5562088f362b499595e9d32f13c24e7

0e11f6f25e767b901f1a87b2cc

AUDIT SCOPE RONIN DPOS CONTRACTS

APPROACH & METHODS RONIN DPOS CONTRACTS

This report has been prepared for Sky Mavis to discover issues and vulnerabilities in the source code of the Ronin DPoS

Contracts project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS RONIN DPOS CONTRACTS

OVERVIEW RONIN DPOS CONTRACTS

Ronin DPoS Contracts is a collection of smart contracts that power the Ronin Delegated Proof of Stake (DPoS) network.

The project includes the following components on Ronin and Mainchains separately:

On Ronin chain:

The governance contract: RoninGovernanceAdmin

The bridge operation contract: RoninGatewayV2

The trusted organization contract: RoninTrustedOrganization

DPoS contracts: SlashIndicator , Staking , RoninValidatorSet , BridgeTracking ,

StakingVesting , Maintenance , VaultForwarder , etc.

On Mainchains:

The governance contract: MainchainGovernanceAdmin

The bridge contract: MainchainGatewayV2

The trusted organization contract: RoninTrustedOrganization

Workflow Graph

Ronin Chain

OVERVIEW RONIN DPOS CONTRACTS

OVERVIEW RONIN DPOS CONTRACTS

Mainchains

External Dependencies

The project relies on pre-compiled contracts for the following functionalities:

sorting validators: address(0x66)

validating double sign evidence: address(0x67)

picking validator set: address(0x68)

It is worth noting that the set of validators can be partitioned into two groups: trusted organizations (whitelisted candidates

who will always be selected) and standard validators (the candidates with the highest staking total).

Also, the project relies on relayer services for passing proposals from the Ronin chain to Mainchains and bridge operators to

facilitate asset transfers between the Ronin chain and Mainchains.

The project uses OpenZeppelin library 4.6.0 for contract format, functionality as well as security and verification purposes.

The following contracts & libraries are referenced in the current project:

"access/AccessControlEnumerable.sol"

"proxy/transparent/TransparentUpgradeableProxy.sol", "proxy/utils/Initializable.sol"

"security/Pausable.sol", "security/ReentrancyGuard.sol",

"token/ERC721/IERC721.sol", "token/ERC20/IERC20.sol"

"utils/Strings.sol", "utils/cryptography/ECDSA.sol", "utils/StorageSlot.sol"

The above dependencies are not within the current audit scope and serve as a black box. Modules/contracts within the

module are assumed to be valid and non-vulnerable actors in this audit and implement proper logic to collaborate with the

current project and other modules.

OVERVIEW RONIN DPOS CONTRACTS

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

Description

To ensure proper project setup, access control, and upgradability, the Ronin protocol adopts multiple roles, including:

Proxy Admin (onlyAdmin)

MODERATOR_ROLE

RELAYER_ROLE

WITHDRAWAL_MIGRATOR

DEFAULT_ADMIN_ROLE

Coinbase (onlyCoinbase)

Governor (onlyGovernor)

In the contract MainchainGovernanceAdmin , the RELAYER_ROLE has the authority over the following functions:

relayProposal() : Relay a proposal.

relayGlobalProposal() : Relay a global proposal.

relayBridgeOperators() : Relay the bridge operators.

In the contract CoinbaseExecution , the Coinbase (onlyCoinbase) has the authority over the following functions:

submitBlockReward() : Submit the block reward.

wrapUpEpoch() : Wrapup an epoch.

In the contract Forwarder , the MODERATOR_ROLE has the authority to invoke the low-level calls to a given target address.

In the contract RoninGovernanceAdmin , the Governor (onlyGovernor) has the authority over the following functions:

propose() : Make a proposal.

proposeProposalStructAndCastVotes() : Make a proposal and cast vote.

proposeProposalForCurrentNetwork() : Make a proposal on the current network.

castProposalVoteForCurrentNetwork() : Cast vote for a proposal on the current network.

proposeGlobal() : Make a global proposal.

proposeGlobalProposalStructAndCastVotes() : Make a global proposal and cast vote.

In the contract VaultForwarder , the DEFAULT_ADMIN_ROLE has the authority over the following function:

withdrawAll : Withdraw all the RON in the vault.

In the contract HasBridgeTrackingContract , the Proxy Admin (onlyAdmin) has the authority over the following function:

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

setBridgeTrackingContract() : Modify the bridge tracking contract.

In the contract HasMaintenanceContract , the Proxy Admin (onlyAdmin) has the authority over the following function:

setMaintenanceContract() : Modify the maintenance contract address.

In the contract HasRoninGovernanceAdminContract , the Proxy Admin (onlyAdmin) has the authority over the following

function:

setRoninGovernanceAdminContract() : Modify the Governance Admin Contract address.

In the contract HasRoninTrustedOrganizationContract , the Proxy Admin (onlyAdmin) has the authority over the

following function:

setRoninTrustedOrganizationContract() : Set the ronin trusted organization contract.

In the contract HasSlashIndicatorContract , the Proxy Admin (onlyAdmin) has the authority over the following function:

setSlashIndicatorContract() : Set the slash indicator contract.

In the contract HasStakingContract , the Proxy Admin (onlyAdmin) has the authority over the following function:

setStakingContract() : Set the staking contract.

In the contract HasStakingVestingContract , the Proxy Admin (onlyAdmin) has the authority over the following function:

setStakingVestingContract() : Set the staking vesting contract.

In the contract HasValidatorContract , the Proxy Admin (onlyAdmin) has the authority over the following function:

setValidatorContract() : Set the validator contract.

In the contract GatewayV2 , the Proxy Admin (onlyAdmin) has the authority over the following functions:

setThreshold() : Set the threshold for the quorum.

pause() / unpause() : Pause/Unpause the contract.

In the contract MinimumWithdrawal , the Proxy Admin (onlyAdmin) has the authority over the following function:

setMinimumThresholds() : Set the minimum threshold for withdrawing.

In the contract WithdrawalLimitation , the Proxy Admin (onlyAdmin) has the authority over the following functions:

setThreshold() : Set the high-tier vote weight threshold.

setHighTierVoteWeightThreshold() : Set the high-tier vote weight threshold.

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

setHighTierThresholds() : Set the thresholds for high-tier withdrawals that require high-tier vote weights.

setLockedThresholds() : Set the amount thresholds to lock withdrawal.

setUnlockFeePercentages() : Set fee percentages to unlock withdrawal.

In the contract MainchainGatewayV2 , the Proxy Admin (onlyAdmin) has the authority over the following functions:

replaceBridgeOperators() : Replace the operators of the bridge.

setWrappedNativeTokenContract() : Set the address of the wrapped native token contract.

mapTokens() : Set the mapping correlation between tokens across different chains, such as connecting the

mainchain with Ronin.

mapTokensAndThresholds() : Set the token mappings and threshold together.

In the contract RoninTrustedOrganization , the Proxy Admin (onlyAdmin) has the authority over the following functions:

setThreshold() : Set the threshold of the quorum.

addTrustedOrganizations() : Add trusted organizations.

updateTrustedOrganizations() : Update trusted organizations.

removeTrustedOrganizations() : Remove trusted organizations.

In the contract CreditScore , the Proxy Admin (onlyAdmin) has the authority over the following function:

setCreditScoreConfigs() : Set the credit score configurations.

In the contract SlashBridgeOperator , the Proxy Admin (onlyAdmin) has the authority over the following function:

setBridgeOperatorSlashingConfigs() : Set the bridge operator slashing configurations.

In the contract SlashBridgeVoting , the Proxy Admin (onlyAdmin) has the authority over the following function:

setBridgeVotingSlashingConfigs() : Set the bridge voting slashing configurations.

In the contract SlashDoubleSign , the Proxy Admin (onlyAdmin) has the authority over the following function:

setDoubleSignSlashingConfigs() : Set the double sign slashing configurations.

In the contract SlashUnavailability , the Proxy Admin (onlyAdmin) has the authority over the following function:

setUnavailabilitySlashingConfigs() : Set the unavailability slashing configurations.

In the contract CandidateStaking , the Proxy Admin (onlyAdmin) has the authority over the following function:

setMinValidatorStakingAmount() : Set the minimum validator staking amount.

In the ValidatorInfoStorage contract, the Proxy Admin (onlyAdmin) has the authority over the following functions:

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

setMaxValidatorNumber() : Set the maximum validator number.

setMaxPrioritizedValidatorNumber() : Set the maximum prioritized validator number.

In the CandidateManager contract, the Proxy Admin (onlyAdmin) has the authority over the following functions:

setMaxValidatorCandidate() : Set the maximum candidate number.

setMinEffectiveDaysOnwards() : Set the minimum effective days.

In the contract EmergencyExit , the Proxy Admin (onlyAdmin) has the authority over the following functions:

setEmergencyExitLockedAmount() : Set emergency exit locked amount.

setEmergencyExpiryDuration() : Set emergency expiry duration.

execReleaseLockedFundForEmergencyExitRequest() : Execute release locked fund for emergency exit request.

In the contract Maintenance , the Proxy Admin (onlyAdmin) has the authority over the following function:

setMaintenanceConfig() : Set the maintenance configurations.

In the contract RoninGatewayV2 , the following roles are adopted:

The Proxy Admin (onlyAdmin) has the authority over the following functions:

setValidatorContract() : Set the validator contract.

setBridgeTrackingContract() : Set the bridge tracking contract.

mapTokens() : Set the mapping correlation between tokens across different chains, such as connecting

the mainchain with Ronin.

The WITHDRAWAL_MIGRATOR has the authority over the following function:

migrateWithdrawals() : Migrate the withdrawals.

In the contract StakingVesting , the Proxy Admin (onlyAdmin) has the authority over the following functions:

setBlockProducerBonusPerBlock() : Set the bonus per block for the block producer.

setBridgeOperatorBonusPerBlock() : Set the bonus per block for the bridge operator.

Additionally, the following roles are intended to be connected to their respective contracts within the codebase.

Validator Contract (onlyValidatorContract)

Slash Indicator Contract (onlySlashIndicatorContract)

Staking Contract (onlyStakingContract)

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

Bridge Contract (onlyBridgeContract)

However, since the dependencies are not guaranteed by the implementation, considering possible setups or upgrades,

misoperations of these roles could potentially bring risks to the project.

In the contract CreditScore , the validator Contract (onlyValidatorContract) has the authority over the following

function:

updateCreditScores() : Update the credit score.

In the contract CandidateStaking , the Validator Contract (onlyValidatorContract) has the authority over the following

function:

deprecatePools() : Deactivate a pool.

In the staking contract, the Validator Contract (onlyValidatorContract) has the authority over the following functions:

execRecordRewards() : Execute recording the rewards.

execDeductStakingAmount() : Execute reducing the staking amount of an address.

In the CandidateManager contract, the Staking Contract (onlyStakingContract) has the authority over the following

functions:

execApplyValidatorCandidate() : Gant a candidate.

execRequestRenounceCandidate() : Revoking a candidate.

execRequestUpdateCommissionRate() : Request to update commission rate.

In the contract EmergencyExit , the Staking Contract (onlyStakingContract) has the authority over the following function:

execEmergencyExit() : Execute emergency exit.

In the contract SlashingExecution , the Slash Indicator Contract (onlySlashIndicatorContract) has the authority over

the following functions:

execSlash() : Execute slash for a validator address.

execBailOut() : Execute bailout for a validator address.

In the contract BridgeTracking , the Bridge Contract (onlyBridgeContract) has the authority over the following functions:

handleVoteApproved() : Update record for approved votes.

recordVote() : Update the state of the vote.

In the contract RoninGovernanceAdmin , the Validator Contract (onlyValidatorContract) has the authority over the

following function:

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

createEmergencyExitPoll() : Create an emergency exit poll.

In the contract StakingVesting , the Validator Contract (onlyValidatorContract) has the authority over the following

function:

requestBonus() : Request bonus.

Finally, certain privileged roles are associated with corresponding components/dependencies that are not within the scope of

the current audit, including precompiled contracts. These dependencies are treated as a blackbox during the audit and

presumed to be functionally correct. More information can be found in the Review Notes section.

If the aforementioned roles are not managed or secured appropriately, attackers could take advantage of the associated

privileges, potentially resulting in unexpected losses for the project.

Recommendations

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term, and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

being compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness of privileged operations;

AND

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

DECENTRALIZATION EFFORTS RONIN DPOS CONTRACTS

FINDINGS RONIN DPOS CONTRACTS

This report has been prepared to discover issues and vulnerabilities for Ronin DPoS Contracts. Through this audit, we have

uncovered 14 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis to

complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

CEU-01
Validators May Have The Wrong Block

Producer Status
Logical Issue Major Resolved

CGU-01
Possible To Create A Proposal That Cannot Be

Voted On
Logical Issue Medium Resolved

ROI-01
Possible To Acquire Credit Score While In

Maintenance
Logical Issue Medium Resolved

BOP-01
For Loop Should Not Return Early When

Casting Vote For Bridge Operators
Logical Issue Minor Resolved

DSU-01
Possible For A Pool Admin To Delegate To A

Different Pool
Inconsistency Minor Resolved

PAC-01
Potential Out-Dated Openzeppelin Library

Usage

Language

Specific
Minor Resolved

ROR-01
Lack Of Check When Updating Trusted

Organization
Inconsistency Minor Resolved

CEH-01 Modifier oncePerEpoch Invalid On First Epoch Volatile Code Informational Acknowledged

CON-01 Incompatibility With Deflationary Tokens Volatile Code Informational Acknowledged

CSI-01 Potential DoS Attack On Candidate Application Logical Issue Informational Acknowledged

ROG-01 Potential Reentrancy Attack Volatile Code Informational Resolved

FINDINGS RONIN DPOS CONTRACTS

14
Total Findings

0
Critical

1
Major

2
Medium

4
Minor

7
Informational

ID Title Category Severity Status

ROO-01 Purpose Of Voting For Bridge Operators Inconsistency Informational Resolved

SLD-01 Implementation Of Double Sign Slashing Logical Issue Informational Resolved

SUU-01
Lack Of Check When Slashing For

Unavailability
Logical Issue Informational Resolved

FINDINGS RONIN DPOS CONTRACTS

CEU-01 VALIDATORS MAY HAVE THE WRONG BLOCK PRODUCER
STATUS

Category Severity Location Status

Logical Issue Major contracts/ronin/validator/CoinbaseExecution.sol: 430, 436 Resolved

Description

It is possible for validators to have an incorrect block producer role as the array used to check if a validator is in maintenance

is incorrect. Since being a block producer is necessary to receive mining rewards, this issue can cause a validator and their

delegators to not be able to acquire rewards.

At the end of each epoch, the function _revampRoles() is called to perform checks on each validator in the array

_currentValidators to decide the next epoch's block producers.

430 bool[] memory _maintainedList =

_maintenanceContract.checkManyMaintained(_candidates, block.number + 1);

431

432 for (uint _i = 0; _i < _currentValidators.length; _i++) {

433 address _validator = _currentValidators[_i];

434 bool _emergencyExitRequested = block.timestamp <=

_emergencyExitJailedTimestamp[_validator];

435 bool _isProducerBefore = isBlockProducer(_validator);

436 bool _isProducerAfter = !(_jailed(_validator) || _maintainedList[_i] ||

_emergencyExitRequested);

To be a block producer for the upcoming epoch, the validator cannot be jailed, in maintenance, or requested an emergency

exit. The maintenance check is done by calling checkManyMaintained() in the maintenance contract.

The issue is that the call to checkManyMaintained() uses the _candidates array, which contains all addresses that can

be a validator, while the _currentValidators array contains addresses that are validators for the next epoch.

In general, these arrays are different since the _candidates array is never sorted to have current validators be at the

beginning of the array. The _candidates array changes in two situations:

1. When a new candidate is added, they are added to the end of the array

2. When a candidate is removed, the removed candidate is first switched with the last candidate of the array and then

removed from the array

Due to the above, there can be no expectations regarding the order of the _candidates array.

Hence, from the function call checkManyMaintained() , the address _maintainedList[_i] corresponds to

_candidates[_i] , but not necessarily _currentValidators[_i] .

CEU-01 RONIN DPOS CONTRACTS

Consequently, if _candidates[_i] is in maintenance, then _currentValidators[_i] will not be a block producer, even if

it should be. This would mean that _currentValidators[_i] and their delegators cannot earn mining rewards.

Scenario

The following is a scenario that demonstrates the above issue:

1. Suppose we have two validator candidates, consensusA and consensusB , where consensusA is a trusted

organization and consensusB applied to be a candidate before consensusA

Hence the _candidates array looks like [consensusB, consensusA]

2. Both candidates are chosen to be validators, so both are block producers

Since consensusA is a trusted organization, it appears first in the validators array

3. consensusB schedules for maintenance in the next epoch

4. When the epoch finishes, consensusB will retain the block producer status but consensusA will have this status

removed due to the above issue

Proof of Concept

A proof-of-concept written in foundry is done in the function testIncorrectBlockProducer() . Changes to the source code

are listed in the comments.

CEU-01 RONIN DPOS CONTRACTS

// Changes made:

// - removed _disableInitializers() from the following:

// - src/ronin/staking/Staking.sol

// - src/ronin/validator/RoninValidatorSet.sol

// - src/ronin/slash-indicator/SlashIndicator.sol

// - src/ronin/StakingVesting.sol

// - src/ronin/Maintenance.sol

// - src/ronin/BridgeTracking.sol

// - src/libraries/Math.sol: Math changed to RoninMath.

// References to Math in various contracts changed to RoninMath

// - src/ronin/RoninGovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getWeight()

// - src/extensions/GovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getMinimumVoteWeight()

// - src/extensions/GovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getTotalWeights()

pragma solidity ^0.8.9;

import "forge-std/Test.sol";

import "../src/ronin/staking/Staking.sol";

import "../src/ronin/validator/RoninValidatorSet.sol";

import "../src/ronin/slash-indicator/SlashIndicator.sol";

import "../src/ronin/StakingVesting.sol";

import "../src/ronin/Maintenance.sol";

import "../src/multi-chains/RoninTrustedOrganization.sol";

import "../src/ronin/RoninGovernanceAdmin.sol";

import "../src/ronin/BridgeTracking.sol";

import "../src/ronin/RoninGatewayV2.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract StakingValidatorTest is Test {

 Staking staking;

 RoninValidatorSet roninValidatorSet;

 SlashIndicator slashIndicator;

 StakingVesting stakingVesting;

 Maintenance maintenance;

 RoninTrustedOrganization roninTrustedOrganization;

 RoninGovernanceAdmin roninGovernanceAdmin;

 RoninGatewayV2 roninGateway;

 BridgeTracking bridgeTracking;

 // Trusted Org Config

 address consensusAddr = vm.addr(1);

 address governor = vm.addr(2);

 address bridgeVoter = vm.addr(3);

CEU-01 RONIN DPOS CONTRACTS

 // Token Config

 address roninToken = address(new ERC20("Ronin Token", "RNT"));

 address mainchainToken = address(new ERC20("Mainchain Token", "MCT"));

 function setUp() public {

 roninValidatorSet = new RoninValidatorSet();

 staking = new Staking();

 slashIndicator = new SlashIndicator();

 stakingVesting = new StakingVesting();

 maintenance = new Maintenance();

 bridgeTracking = new BridgeTracking();

 _deployRoninTrustedOrg();

 _deployRoninGateway();

 _deployRoninGovernanceAdmin();

 _initializeStaking();

 _initializeValidator();

 _initializeSlashIndicator();

 _initializeStakingVesting();

 _initializeMaintenance();

 _initializeBridgeTracking();

 _deployPickValidatorSet();

 }

 function testIncorrectBlockProducer() public {

 address poolAdminB = vm.addr(10);

 address consensusAddrB = vm.addr(11);

 address bridgeOperatorB = vm.addr(12);

 vm.deal(poolAdminB, 1e18);

 vm.prank(poolAdminB);

 staking.applyValidatorCandidate{ value: 1000 }(

 poolAdminB,

 consensusAddrB,

 payable(poolAdminB),

 bridgeOperatorB,

 10

);

 // create validators

 vm.deal(governor, 1e18);

 vm.prank(governor);

 staking.applyValidatorCandidate{ value: 1000 }(

 governor,

 consensusAddr,

 payable(governor),

 bridgeVoter,

CEU-01 RONIN DPOS CONTRACTS

 10

);

 // setup initial validators

 vm.coinbase(address(this));

 vm.roll(199); // to satisfy whenEpochEnding oncePerEpoch modifier

 vm.warp(block.timestamp + 1 days + 1); // to be in a new period

 roninValidatorSet.wrapUpEpoch();

 // check both are block producers

 assert(roninValidatorSet.isBlockProducer(consensusAddr));

 assert(roninValidatorSet.isBlockProducer(consensusAddrB));

 // put consensusAddrB validator in maintenance

 vm.prank(poolAdminB);

 maintenance.schedule(

 consensusAddrB,

 block.number + 1, // 200

 399

);

 // revamp roles

 vm.roll(299);

 roninValidatorSet.wrapUpEpoch();

 // the validator in maintenance is still a block producer

 // the validator not in maintenance is no longer a block producer

 assert(!roninValidatorSet.isBlockProducer(consensusAddr));

 assert(roninValidatorSet.isBlockProducer(consensusAddrB));

 // this is because the validator and candidates array are different

 address[] memory validators = roninValidatorSet.getValidators();

 address[] memory candidates = roninValidatorSet.getValidatorCandidates();

 assert(validators[0] == candidates[1]);

 assert(validators[1] == candidates[0]);

 }

 function _initializeStaking() internal {

 staking.initialize(

 address(roninValidatorSet),

 20, // minValidatorStakingAmount

 3 * 86400, // cooldownSecsToUndelegate

 7 * 86400 // waitingSecsToRevoke

);

 }

 function _initializeValidator() internal {

 uint256[2] memory emergencyExitConfigs;

CEU-01 RONIN DPOS CONTRACTS

 emergencyExitConfigs[0] = 500; // emergencyExitLockedAmount

 emergencyExitConfigs[1] = 14 * 86400; // emergencyExpiryDuration

 roninValidatorSet.initialize(

 address(slashIndicator),

 address(staking),

 address(stakingVesting),

 address(maintenance),

 address(roninTrustedOrganization),

 address(bridgeTracking),

 100, // maxValidatorNumber

 100, // maxValidatorCandidate

 100, // maxPrioritizedValidatorNumber

 1, // minEffectiveDaysOnwards

 100, // numberOfBlocksInEpoch

 emergencyExitConfigs

);

 }

 function _initializeSlashIndicator() internal {

 uint256[4] memory _bridgeOperatorSlashingConfigs;

 _bridgeOperatorSlashingConfigs[0] = 5; // _missingVotesRatioTier1

 _bridgeOperatorSlashingConfigs[1] = 10; // _missingVotesRatioTier2

 _bridgeOperatorSlashingConfigs[2] = 5; //

_jailDurationForMissingVotesRatioTier2

 _bridgeOperatorSlashingConfigs[3] = 10; //

_skipBridgeOperatorSlashingThreshold

 uint256[2] memory _bridgeVotingSlashingConfigs;

 _bridgeVotingSlashingConfigs[0] = 10; // _bridgeVotingThreshold

 _bridgeVotingSlashingConfigs[1] = 100; // _bridgeVotingSlashAmount

 uint256[2] memory _doubleSignSlashingConfigs;

 _doubleSignSlashingConfigs[0] = 100; // _slashDoubleSignAmount

 _doubleSignSlashingConfigs[1] = 5000; // _doubleSigningJailUntilBlock

 uint256[4] memory _unavailabilitySlashingConfigs;

 _unavailabilitySlashingConfigs[0] = 5; // _unavailabilityTier1Threshold

 _unavailabilitySlashingConfigs[1] = 10; // _unavailabilityTier2Threshold

 _unavailabilitySlashingConfigs[2] = 100; //

_slashAmountForUnavailabilityTier2Threshold

 _unavailabilitySlashingConfigs[3] = 100; //

_jailDurationForUnavailabilityTier2Threshold

 uint256[4] memory _creditScoreConfigs;

 _creditScoreConfigs[0] = 5; // _gainCreditScore

 _creditScoreConfigs[1] = 100; // _maxCreditScore

 _creditScoreConfigs[2] = 0; // _bailOutCostMultiplier

 _creditScoreConfigs[3] = 10; // _cutOffPercentageAfterBailout

CEU-01 RONIN DPOS CONTRACTS

 slashIndicator.initialize(

 address(roninValidatorSet),

 address(maintenance),

 address(roninTrustedOrganization),

 address(roninGovernanceAdmin),

 _bridgeOperatorSlashingConfigs,

 _bridgeVotingSlashingConfigs,

 _doubleSignSlashingConfigs,

 _unavailabilitySlashingConfigs,

 _creditScoreConfigs

);

 }

 function _initializeStakingVesting() internal {

 stakingVesting.initialize(

 address(roninValidatorSet),

 100, // blockProducerBonusPerBlock

 100 // bridgeOperatorBonusPerBlock

);

 vm.deal(address(stakingVesting), 1e18);

 }

 function _initializeMaintenance() internal {

 maintenance.initialize(

 address(roninValidatorSet),

 0, // minMaintenanceDurationInBlock

 1000, // maxMaintenanceDurationInBlock

 1, // minOffsetToStartSchedule

 1000, // maxOffsetToStartSchedule

 100 // maxSchedules

);

 }

 function _initializeBridgeTracking() internal {

 bridgeTracking.initialize(

 address(roninGateway),

 address(roninValidatorSet),

 block.number // startedAtBlock

);

 }

 function _deployRoninTrustedOrg() internal {

 roninTrustedOrganization = new RoninTrustedOrganization();

 IRoninTrustedOrganization.TrustedOrganization memory trustedOrg =

 IRoninTrustedOrganization.TrustedOrganization(

 consensusAddr,

 governor,

CEU-01 RONIN DPOS CONTRACTS

 bridgeVoter,

 100, // weight

 0 // added block

);

 IRoninTrustedOrganization.TrustedOrganization[] memory trustedOrgs =

 new IRoninTrustedOrganization.TrustedOrganization[](1);

 trustedOrgs[0] = trustedOrg;

 roninTrustedOrganization.initialize(

 trustedOrgs,

 1, // numerator

 1 // denominator

);

 }

 function _deployRoninGateway() internal {

 roninGateway = new RoninGatewayV2();

 address[] memory _withdrawalMigrators = new address[](1);

 _withdrawalMigrators[0] = address(this);

 address[][2] memory _packedAddresses;

 _packedAddresses[0] = new address[](1);

 _packedAddresses[0][0] = roninToken;

 _packedAddresses[1] = new address[](1);

 _packedAddresses[1][0] = mainchainToken;

 uint256[][2] memory _packedNumbers;

 _packedNumbers[0] = new uint256[](1);

 _packedNumbers[0][0] = block.chainid; // ronin chain id

 _packedNumbers[1] = new uint256[](1);

 _packedNumbers[1][0] = 0; // min threshold

 Token.Standard[] memory _standards = new Token.Standard[](1);

 _standards[0] = Token.Standard.ERC20;

 roninGateway.initialize(

 address(this), // role setter

 1, // numerator

 1, // denominator

 _withdrawalMigrators,

 _packedAddresses,

 _packedNumbers,

 _standards

);

 }

 function _deployRoninGovernanceAdmin() internal {

CEU-01 RONIN DPOS CONTRACTS

 roninGovernanceAdmin = new RoninGovernanceAdmin(

 2020, // ronin chain id

 address(roninTrustedOrganization),

 address(roninGateway),

 address(roninValidatorSet),

 100 // proposalExpiryDuration

);

 }

 function _deployPickValidatorSet() internal {

 PickValidatorSet pickValidatorSet = new PickValidatorSet();

 bytes memory code = address(pickValidatorSet).code;

 address targetAddr = address(0x68);

 vm.etch(targetAddr, code);

 }

}

contract PickValidatorSet {

 function pickValidatorSet(

 address[] calldata candidates,

 uint256[] calldata weights,

 uint256[] calldata trustedWeights,

 uint256 maxValidatorNumber,

 uint256 maxPrioritizedValidatorNumber

) external pure returns (address[] memory) {

 uint256 len = candidates.length;

 address[] memory newValidators = new address[](len);

 for (uint256 i = 0; i < len; i++) {

 newValidators[i] = candidates[len - 1 - i];

 }

 return newValidators;

 }

}

Recommendation

Recommend checking maintenance on the array _currentValidators instead of _candidates .

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

6e2566235009c9e85f1869233ba6966d58ad6dd4 by using the correct array.

CEU-01 RONIN DPOS CONTRACTS

https://github.com/axieinfinity/ronin-dpos-contracts/commit/6e2566235009c9e85f1869233ba6966d58ad6dd4

CGU-01 POSSIBLE TO CREATE A PROPOSAL THAT CANNOT BE
VOTED ON

Category Severity Location Status

Logical

Issue
Medium

contracts/extensions/sequential-governance/CoreGovernance.sol: 11

6, 173
Resolved

Description

It is possible to create a proposal whose nonce does not match with the current round if the previous proposal expired,

making it impossible to vote for the proposal.

When a proposal is created via _proposeProposal() , the nonce of the proposal is set to the current round plus one.

 function _proposeProposal(

 ...

) internal virtual returns (Proposal.ProposalDetail memory _proposal) {

 require(_chainId != 0, "CoreGovernance: invalid chain id");

 _proposal = Proposal.ProposalDetail(

 round[_chainId] + 1,

 _chainId,

 _expiryTimestamp,

 _targets,

 _values,

 _calldatas,

 _gasAmounts

);

 _proposal.validate(_proposalExpiryDuration);

 bytes32 _proposalHash = _proposal.hash();

 uint256 _round = _createVotingRound(_chainId, _proposalHash, _expiryTimestamp);

 emit ProposalCreated(_chainId, _round, _proposalHash, _proposal, _creator);

 }

Even though the nonce of the proposal is set to round[_chainId] + 1 , _proposeProposal() calls

_createVotingRound() , which decides the current round and can be different from round[chainId] + 1 .

CGU-01 RONIN DPOS CONTRACTS

 function _createVotingRound(

 ...

) internal returns (uint256 _round) {

 _round = round[_chainId];

 // Skip checking for the first ever round

 if (_round == 0) {

 _round = round[_chainId] = 1;

 } else {

 ProposalVote storage _latestProposalVote = vote[_chainId][_round];

 bool _isExpired = _tryDeleteExpiredVotingRound(_latestProposalVote);

 // Skip increase round number if the latest round is expired, allow the vote

to be overridden

 if (!_isExpired) {

 require(_latestProposalVote.status != VoteStatus.Pending, "CoreGovernance:

current proposal is not completed");

 _round = ++round[_chainId];

 }

 }

 vote[_chainId][_round].hash = _proposalHash;

 vote[_chainId][_round].expiryTimestamp = _expiryTimestamp;

 }

In particular, if the previous proposal expired, the round of the proposal will still be round[chainId] instead of

round[chainId] + 1 .

This prevents voting on the proposal because when casting a vote, there is a check to ensure that the proposal's nonce

matches with the current round.

 function _castVote(

 ...

) internal virtual returns (bool _done) {

 uint256 _chainId = _proposal.chainId;

 uint256 _round = _proposal.nonce;

 ProposalVote storage _vote = vote[_chainId][_round];

 ...

 require(round[_proposal.chainId] == _round, "CoreGovernance: query for invalid

proposal nonce");

This also prevents functions that have a hash check as the hash of a proposal includes the proposal's nonce. For example,

in _castProposalVoteForCurrentNetwork() :

CGU-01 RONIN DPOS CONTRACTS

 function _castProposalVoteForCurrentNetwork(

 ...

) internal {

 require(_proposal.chainId == block.chainid, "RoninGovernanceAdmin: invalid chain

id");

 require(

 vote[_proposal.chainId][_proposal.nonce].hash == _proposal.hash(),

 "RoninGovernanceAdmin: cast vote for invalid proposal"

);

The same issue exists in _proposeGlobal() , where the nonce of the proposal is decided before the round.

 function _proposeGlobal(

 ...

) internal virtual returns (uint256 _round) {

 GlobalProposal.GlobalProposalDetail memory _globalProposal =

GlobalProposal.GlobalProposalDetail(

 round[0] + 1,

 _expiryTimestamp,

 _targetOptions,

 _values,

 _calldatas,

 _gasAmounts

);

 Proposal.ProposalDetail memory _proposal = _globalProposal.into_proposal_detail(

 _roninTrustedOrganizationContract,

 _gatewayContract

);

 _proposal.validate(_proposalExpiryDuration);

 bytes32 _proposalHash = _proposal.hash();

 _round = _createVotingRound(0, _proposalHash, _expiryTimestamp);

 emit GlobalProposalCreated(_round, _proposalHash, _proposal,

_globalProposal.hash(), _globalProposal, _creator);

 }

The issue can be fixed by proposing a proposal using the function _proposeProposalStruct() , or

_proposeGlobalStruct() for global proposals`, as the nonce of the proposal can be manually set to match the expected

round.

This fix does require the invalid proposal to first expire, which may take a long time.

Scenario

Two scenarios are provided to demonstrate the above issue.

The first scenario shows how voting can be prevented by performing the following:

CGU-01 RONIN DPOS CONTRACTS

1. Create a proposal using RoninGovernanceAdmin.proposeProposalForCurrentNetwork()

Note that this function also has the function caller vote on the proposal

2. After the proposal expires, create the same proposal using

RoninGovernanceAdmin.proposeProposalForCurrentNetwork()

3. This call will revert with the message "RoninGovernanceAdmin: cast vote for invalid proposal" as the hash of the

proposal is incorrect due to an incorrect nonce

The second scenario creates a proposal and directly shows that its nonce does not match the current round by performing

the following:

1. Create a proposal using RoninGovernanceAdmin.propose()

2. After the proposal expires, create the same proposal using RoninGovernanceAdmin.propose()

3. Check that the proposal's nonce and current round are not the same

Proof of Concept

The following proof of concept written in foundry is provided to demonstrate the above two scenarios. The function

testCannotVoteOnProposal() showcases the first scenario while testIncorrectProposalNonce() showcases the

second scenario.

Changes to the source code are stated in the comments.

CGU-01 RONIN DPOS CONTRACTS

// Changes made:

// - src/libraries/Math.sol: Math changed to RoninMath (to deal with compiler

issue).

// References to Math in various contracts changed to RoninMath

// - src/ronin/RoninGovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getWeight()

// - src/extensions/GovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getMinimumVoteWeight()

// - src/extensions/GovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getTotalWeights()

pragma solidity ^0.8.9;

import "forge-std/Test.sol";

import "../src/ronin/RoninGovernanceAdmin.sol";

import "../src/multi-chains/RoninTrustedOrganization.sol";

contract RoninGovernanceTest is Test {

 RoninGovernanceAdmin roninGovernanceAdmin;

 RoninTrustedOrganization roninTrustedOrganization;

 address bridgeContract = vm.addr(100); // placeholder as contract is unused

 address validatorContract = vm.addr(101); // placeholder as contract is unused

 address consensusAddr = vm.addr(1);

 address governor = vm.addr(2);

 address bridgeVoter = vm.addr(3);

 address consensusAddrB = vm.addr(11);

 address governorB = vm.addr(12);

 address bridgeVoterB = vm.addr(13);

 uint256 proposalExpiryDuration = 100;

 function setUp() public {

 _deployRoninTrustedOrg();

 _deployRoninGovernanceAdmin();

 }

 function testCannotVoteOnProposal() public {

 // proposal parameters

 address[] memory targets = new address[](1);

 targets[0] = vm.addr(7777);

 uint256[] memory values = new uint256[](1);

 values[0] = 7777;

 bytes[] memory calldatas = new bytes[](1);

 calldatas[0] = new bytes(7777);

CGU-01 RONIN DPOS CONTRACTS

 uint256[] memory gasAmounts = new uint256[](1);

 gasAmounts[0] = 7777;

 Ballot.VoteType support = Ballot.VoteType.Against;

 // create a proposal and vote on it

 vm.prank(governor);

 roninGovernanceAdmin.proposeProposalForCurrentNetwork(

 block.timestamp + 1, // expiry timestamp

 targets,

 values,

 calldatas,

 gasAmounts,

 support

);

 // increase time so that previous proposal expires

 vm.warp(block.timestamp + 10);

 // create the same proposal, but call will revert due to invalid hash

 vm.prank(governor);

 vm.expectRevert("RoninGovernanceAdmin: cast vote for invalid proposal");

 roninGovernanceAdmin.proposeProposalForCurrentNetwork(

 block.timestamp + 1, // expiry timestamp

 targets,

 values,

 calldatas,

 gasAmounts,

 support

);

 }

 // Change in src/ronin/RoninGovernanceAdmin.sol:

 // propose() returns Proposal.ProposalDetail

 function testIncorrectProposalNonce() public {

 // proposal parameters

 address[] memory targets = new address[](1);

 targets[0] = vm.addr(7777);

 uint256[] memory values = new uint256[](1);

 values[0] = 7777;

 bytes[] memory calldatas = new bytes[](1);

 calldatas[0] = new bytes(7777);

 uint256[] memory gasAmounts = new uint256[](1);

 gasAmounts[0] = 7777;

CGU-01 RONIN DPOS CONTRACTS

 // create a proposal

 vm.prank(governor);

 roninGovernanceAdmin.propose(

 1, // chain id

 block.timestamp + 1, // expiry timestamp

 targets,

 values,

 calldatas,

 gasAmounts

);

 // increase time so that previous proposal expires

 vm.warp(block.timestamp + 10);

 // create the same proposal again

 vm.prank(governor);

 Proposal.ProposalDetail memory proposal = roninGovernanceAdmin.propose(

 1, // chain id

 block.timestamp + 1, // expiry timestamp

 targets,

 values,

 calldatas,

 gasAmounts

);

 // check that current round is not the proposal's nonce

 uint256 currentRound = roninGovernanceAdmin.round(1);

 assert(currentRound == 1);

 assert(proposal.nonce == 2);

 }

 function _deployRoninTrustedOrg() internal {

 roninTrustedOrganization = new RoninTrustedOrganization();

 IRoninTrustedOrganization.TrustedOrganization memory trustedOrg =

 IRoninTrustedOrganization.TrustedOrganization(

 consensusAddr,

 governor,

 bridgeVoter,

 1, // weight

 0 // added block

);

 IRoninTrustedOrganization.TrustedOrganization memory trustedOrgB =

 IRoninTrustedOrganization.TrustedOrganization(

 consensusAddrB,

 governorB,

 bridgeVoterB,

 100, // weight

CGU-01 RONIN DPOS CONTRACTS

 0 // added block

);

 IRoninTrustedOrganization.TrustedOrganization[] memory trustedOrgs =

 new IRoninTrustedOrganization.TrustedOrganization[](2);

 trustedOrgs[0] = trustedOrg;

 trustedOrgs[1] = trustedOrgB;

 roninTrustedOrganization.initialize(

 trustedOrgs,

 1, // numerator

 2 // denominator

);

 }

 function _deployRoninGovernanceAdmin() internal {

 roninGovernanceAdmin = new RoninGovernanceAdmin(

 2020, // ronin chain id

 address(roninTrustedOrganization),

 bridgeContract,

 validatorContract,

 proposalExpiryDuration

);

 }

}

Recommendation

Recommend first checking if the current proposal has expired and if so, the nonce of the new proposal should be

round[chainId] , otherwise if the proposal is not pending, round[chainId] + 1 .

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

ddbdfc803154f04c8e6eedb3e7073b2fb5142c0f by first checking for expiration and then deciding the round number.

CGU-01 RONIN DPOS CONTRACTS

https://github.com/axieinfinity/ronin-dpos-contracts/commit/ddbdfc803154f04c8e6eedb3e7073b2fb5142c0f

ROI-01 POSSIBLE TO ACQUIRE CREDIT SCORE WHILE IN
MAINTENANCE

Category Severity Location Status

Logical

Issue
Medium

contracts/ronin/slash-indicator/CreditScore.sol: 36; contracts/ronin/valid

ator/CoinbaseExecution.sol: 107
Resolved

Description

Validators in maintenance will never be considered to be in maintenance when updating credit scores due to an incorrect

value of the variable _periodStartAtBlock . This allows validators to acquire credit scores while in maintenance.

The function updateCreditScores() is called by wrapUpEpoch() , which occurs at the end of an epoch.

 function wrapUpEpoch() external payable virtual override onlyCoinbase

whenEpochEnding oncePerEpoch {

 ...

 if (_periodEnding) {

 _currentPeriodStartAtBlock = block.number + 1;

 ...

 _slashIndicatorContract.updateCreditScores(_currentValidators, _lastPeriod);

Note that _currentPeriodStartAtBlock is updated to block.number + 1 before updateCreditScores() is called.

The function updateCreditScores() then calls currentPeriodStartAtBlock() , setting _periodStartAtBlock ==

block.number + 1 , and this return value is used in checkManyMaintainedInBlockRange() .

 function updateCreditScores(address[] calldata _validators, uint256 _period)

external override onlyValidatorContract {

 uint256 _periodStartAtBlock = _validatorContract.currentPeriodStartAtBlock();

 bool[] memory _jaileds = _validatorContract.checkManyJailed(_validators);

 bool[] memory _maintaineds =

_maintenanceContract.checkManyMaintainedInBlockRange(

 _validators,

 _periodStartAtBlock,

 block.number

);

The function checkManyMaintainedInBlockRange() checks to see if validators are in maintenance within the block range

[_periodStartAtBlock, block.number] . Since _periodStartAtBlock == block.number + 1 > block.number , no

validators will be considered to be in maintenance.

ROI-01 RONIN DPOS CONTRACTS

As validators in maintenance are to receive no credit score, this issue actually allows such validators to acquire credit scores

for the period.

Proof of Concept

A proof of concept written in foundry is provided that demonstrates the above issue, where a validator in maintenance is able

to acquire credit score. This is done by the function testIncorrectMaintenance() .

Changes to the source code are listed in the comments and a fake PickValidatorSet contract was created in order to

choose validators.

ROI-01 RONIN DPOS CONTRACTS

// Changes made:

// - removed _disableInitializers() from the following:

// - src/ronin/staking/Staking.sol

// - src/ronin/validator/RoninValidatorSet.sol

// - src/ronin/slash-indicator/SlashIndicator.sol

// - src/ronin/StakingVesting.sol

// - src/ronin/Maintenance.sol

// - src/ronin/BridgeTracking.sol

// - src/libraries/Math.sol: Math changed to RoninMath.

// References to Math in various contracts changed to RoninMath

// - src/ronin/RoninGovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getWeight()

// - src/extensions/GovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getMinimumVoteWeight()

// - src/extensions/GovernanceAdmin.sol: removed TransparentUpgradeableProxyV2

// in _getTotalWeights()

pragma solidity ^0.8.9;

import "forge-std/Test.sol";

import "../src/ronin/staking/Staking.sol";

import "../src/ronin/validator/RoninValidatorSet.sol";

import "../src/ronin/slash-indicator/SlashIndicator.sol";

import "../src/ronin/StakingVesting.sol";

import "../src/ronin/Maintenance.sol";

import "../src/multi-chains/RoninTrustedOrganization.sol";

import "../src/ronin/RoninGovernanceAdmin.sol";

import "../src/ronin/BridgeTracking.sol";

import "../src/ronin/RoninGatewayV2.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

contract StakingValidatorTest is Test {

 Staking staking;

 RoninValidatorSet roninValidatorSet;

 SlashIndicator slashIndicator;

 StakingVesting stakingVesting;

 Maintenance maintenance;

 RoninTrustedOrganization roninTrustedOrganization;

 RoninGovernanceAdmin roninGovernanceAdmin;

 RoninGatewayV2 roninGateway;

 BridgeTracking bridgeTracking;

 // Trusted Org Config

 address consensusAddr = vm.addr(1);

 address governor = vm.addr(2);

 address bridgeVoter = vm.addr(3);

ROI-01 RONIN DPOS CONTRACTS

 // Token Config

 address roninToken = address(new ERC20("Ronin Token", "RNT"));

 address mainchainToken = address(new ERC20("Mainchain Token", "MCT"));

 function setUp() public {

 roninValidatorSet = new RoninValidatorSet();

 staking = new Staking();

 slashIndicator = new SlashIndicator();

 stakingVesting = new StakingVesting();

 maintenance = new Maintenance();

 bridgeTracking = new BridgeTracking();

 _deployRoninTrustedOrg();

 _deployRoninGateway();

 _deployRoninGovernanceAdmin();

 _initializeStaking();

 _initializeValidator();

 _initializeSlashIndicator();

 _initializeStakingVesting();

 _initializeMaintenance();

 _initializeBridgeTracking();

 _deployPickValidatorSet();

 }

 function testIncorrectMaintenance() public {

 // create a validator

 vm.deal(governor, 1e18);

 vm.prank(governor);

 staking.applyValidatorCandidate{ value: 1000 }(

 governor,

 consensusAddr,

 payable(governor),

 bridgeVoter,

 10

);

 // setup initial validators

 vm.coinbase(address(this));

 vm.roll(199); // to satisfy whenEpochEnding oncePerEpoch modifier

 vm.warp(block.timestamp + 1 days + 1); // to be in a new period

 roninValidatorSet.wrapUpEpoch();

 assert(slashIndicator.getCreditScore(consensusAddr) == 0); // as was not a

validator yet

 // test first credit score

 vm.roll(299);

 vm.warp(block.timestamp + 1 days + 1);

ROI-01 RONIN DPOS CONTRACTS

 roninValidatorSet.wrapUpEpoch();

 assert(slashIndicator.getCreditScore(consensusAddr) == 5); // gained credit

 // put validator in maintenance

 vm.prank(governor);

 maintenance.schedule(

 consensusAddr,

 block.number + 1, // 300

 399

);

 // gained credit score even though in maintenance

 vm.roll(399);

 vm.warp(block.timestamp + 1 days + 1);

 roninValidatorSet.wrapUpEpoch();

 assert(slashIndicator.getCreditScore(consensusAddr) == 10); // gained credit

 }

 function _initializeStaking() internal {

 staking.initialize(

 address(roninValidatorSet),

 20, // minValidatorStakingAmount

 3 * 86400, // cooldownSecsToUndelegate

 7 * 86400 // waitingSecsToRevoke

);

 }

 function _initializeValidator() internal {

 uint256[2] memory emergencyExitConfigs;

 emergencyExitConfigs[0] = 500; // emergencyExitLockedAmount

 emergencyExitConfigs[1] = 14 * 86400; // emergencyExpiryDuration

 roninValidatorSet.initialize(

 address(slashIndicator),

 address(staking),

 address(stakingVesting),

 address(maintenance),

 address(roninTrustedOrganization),

 address(bridgeTracking),

 100, // maxValidatorNumber

 100, // maxValidatorCandidate

 100, // maxPrioritizedValidatorNumber

 1, // minEffectiveDaysOnwards

 100, // numberOfBlocksInEpoch

 emergencyExitConfigs

);

 }

 function _initializeSlashIndicator() internal {

ROI-01 RONIN DPOS CONTRACTS

 uint256[4] memory _bridgeOperatorSlashingConfigs;

 _bridgeOperatorSlashingConfigs[0] = 5; // _missingVotesRatioTier1

 _bridgeOperatorSlashingConfigs[1] = 10; // _missingVotesRatioTier2

 _bridgeOperatorSlashingConfigs[2] = 5; //

_jailDurationForMissingVotesRatioTier2

 _bridgeOperatorSlashingConfigs[3] = 10; //

_skipBridgeOperatorSlashingThreshold

 uint256[2] memory _bridgeVotingSlashingConfigs;

 _bridgeVotingSlashingConfigs[0] = 10; // _bridgeVotingThreshold

 _bridgeVotingSlashingConfigs[1] = 100; // _bridgeVotingSlashAmount

 uint256[2] memory _doubleSignSlashingConfigs;

 _doubleSignSlashingConfigs[0] = 100; // _slashDoubleSignAmount

 _doubleSignSlashingConfigs[1] = 5; // _doubleSigningJailUntilBlock

 uint256[4] memory _unavailabilitySlashingConfigs;

 _unavailabilitySlashingConfigs[0] = 5; // _unavailabilityTier1Threshold

 _unavailabilitySlashingConfigs[1] = 10; // _unavailabilityTier2Threshold

 _unavailabilitySlashingConfigs[2] = 100; //

_slashAmountForUnavailabilityTier2Threshold

 _unavailabilitySlashingConfigs[3] = 100; //

_jailDurationForUnavailabilityTier2Threshold

 uint256[4] memory _creditScoreConfigs;

 _creditScoreConfigs[0] = 5; // _gainCreditScore

 _creditScoreConfigs[1] = 100; // _maxCreditScore

 _creditScoreConfigs[2] = 5; // _bailOutCostMultiplier

 _creditScoreConfigs[3] = 10; // _cutOffPercentageAfterBailout

 slashIndicator.initialize(

 address(roninValidatorSet),

 address(maintenance),

 address(roninTrustedOrganization),

 address(roninGovernanceAdmin),

 _bridgeOperatorSlashingConfigs,

 _bridgeVotingSlashingConfigs,

 _doubleSignSlashingConfigs,

 _unavailabilitySlashingConfigs,

 _creditScoreConfigs

);

 }

 function _initializeStakingVesting() internal {

 stakingVesting.initialize(

 address(roninValidatorSet),

 100, // blockProducerBonusPerBlock

 100 // bridgeOperatorBonusPerBlock

);

ROI-01 RONIN DPOS CONTRACTS

 }

 function _initializeMaintenance() internal {

 maintenance.initialize(

 address(roninValidatorSet),

 0, // minMaintenanceDurationInBlock

 1000, // maxMaintenanceDurationInBlock

 1, // minOffsetToStartSchedule

 1000, // maxOffsetToStartSchedule

 100 // maxSchedules

);

 }

 function _initializeBridgeTracking() internal {

 bridgeTracking.initialize(

 address(roninGateway),

 address(roninValidatorSet),

 block.number // startedAtBlock

);

 }

 function _deployRoninTrustedOrg() internal {

 roninTrustedOrganization = new RoninTrustedOrganization();

 IRoninTrustedOrganization.TrustedOrganization memory trustedOrg =

 IRoninTrustedOrganization.TrustedOrganization(

 consensusAddr,

 governor,

 bridgeVoter,

 100, // weight

 0 // added block

);

 IRoninTrustedOrganization.TrustedOrganization[] memory trustedOrgs =

 new IRoninTrustedOrganization.TrustedOrganization[](1);

 trustedOrgs[0] = trustedOrg;

 roninTrustedOrganization.initialize(

 trustedOrgs,

 1, // numerator

 1 // denominator

);

 }

 function _deployRoninGateway() internal {

 roninGateway = new RoninGatewayV2();

 address[] memory _withdrawalMigrators = new address[](1);

 _withdrawalMigrators[0] = address(this);

ROI-01 RONIN DPOS CONTRACTS

 address[][2] memory _packedAddresses;

 _packedAddresses[0] = new address[](1);

 _packedAddresses[0][0] = roninToken;

 _packedAddresses[1] = new address[](1);

 _packedAddresses[1][0] = mainchainToken;

 uint256[][2] memory _packedNumbers;

 _packedNumbers[0] = new uint256[](1);

 _packedNumbers[0][0] = block.chainid; // ronin chain id

 _packedNumbers[1] = new uint256[](1);

 _packedNumbers[1][0] = 0; // min threshold

 Token.Standard[] memory _standards = new Token.Standard[](1);

 _standards[0] = Token.Standard.ERC20;

 roninGateway.initialize(

 address(this), // role setter

 1, // numerator

 1, // denominator

 _withdrawalMigrators,

 _packedAddresses,

 _packedNumbers,

 _standards

);

 }

 function _deployRoninGovernanceAdmin() internal {

 roninGovernanceAdmin = new RoninGovernanceAdmin(

 2020, // ronin chain id

 address(roninTrustedOrganization),

 address(roninGateway),

 address(roninValidatorSet),

 100 // proposalExpiryDuration

);

 }

 function _deployPickValidatorSet() internal {

 PickValidatorSet pickValidatorSet = new PickValidatorSet();

 bytes memory code = address(pickValidatorSet).code;

 address targetAddr = address(0x68);

 vm.etch(targetAddr, code);

 }

}

contract PickValidatorSet {

 function pickValidatorSet(

 address[] calldata candidates,

 uint256[] calldata weights,

ROI-01 RONIN DPOS CONTRACTS

 uint256[] calldata trustedWeights,

 uint256 maxValidatorNumber,

 uint256 maxPrioritizedValidatorNumber

) external pure returns (address[] memory) {

 return candidates;

 }

}

Recommendation

Recommend first updating credit scores and then updating the _currentPeriodStartAtBlock variable in the

CoinbaseExecution contract.

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

f584d65c5534fa6577e41362d9f8dde1f008e9a1 by updating _currentPeriodStartAtBlock after updating credit scores.

ROI-01 RONIN DPOS CONTRACTS

https://github.com/axieinfinity/ronin-dpos-contracts/commit/f584d65c5534fa6577e41362d9f8dde1f008e9a1

BOP-01 FOR LOOP SHOULD NOT RETURN EARLY WHEN CASTING
VOTE FOR BRIDGE OPERATORS

Category Severity Location Status

Logical

Issue
Minor

contracts/extensions/isolated-governance/bridge-operator-governance/B

OsGovernanceProposal.sol: 85
Resolved

Description

When governors cast votes for a set of bridge operators, a for loop is done on an array of signatures, casting a vote for

each signature.

69 for (uint256 _i = 0; _i < _signatures.length; _i++) {

70 // Avoids stack too deeps

71 {

72 Signature calldata _sig = _signatures[_i];

73 _signer = ECDSA.recover(_digest, _sig.v, _sig.r, _sig.s);

74 require(_lastSigner < _signer, "BOsGovernanceProposal: invalid signer

order");

75 _lastSigner = _signer;

76 }

77

78 uint256 _weight = _getBridgeVoterWeight(_signer);

79 if (_weight > 0) {

80 _hasValidVotes = true;

81 _lastVotedBlock[_signer] = block.number;

82 _info.signatureOf[_signer] = _signatures[_i];

83 _info.voters.push(_signer);

84 if (_castVote(_v, _signer, _weight, _minimumVoteWeight, _hash) ==

VoteStatus.Approved) {

85 return;

If the vote of a governor causes the proposal to pass, then the function returns early, causing later iterations of the loop to not

occur. The loop updates the _lastVotedBlock of the voter, which is important as it is used when deciding whether or not to

slash a governor for not voting enough.

BOP-01 RONIN DPOS CONTRACTS

33 function slashBridgeVoting(address _consensusAddr) external {

34 IRoninTrustedOrganization.TrustedOrganization memory _org =

_roninTrustedOrganizationContract

35 .getTrustedOrganization(_consensusAddr);

36 uint256 _lastVotedBlock =

Math.max(_roninGovernanceAdminContract.lastVotedBlock(_org.bridgeVoter),

_org.addedBlock);

37 uint256 _period = _validatorContract.currentPeriod();

38 if (block.number - _lastVotedBlock > _bridgeVotingThreshold &&

!_bridgeVotingSlashed[_consensusAddr][_period]) {

39 _bridgeVotingSlashed[_consensusAddr][_period] = true;

40 emit Slashed(_consensusAddr, SlashType.BRIDGE_VOTING, _period);

41 _validatorContract.execSlash(_consensusAddr, 0,

_bridgeVotingSlashAmount);

As the _signatures array is sorted, it is possible that the _lastVotedBlock value for governors with lexicographically later

addresses to not have their _lastVotedBlock value be updated. Such governors would need to vote on the same proposal

again.

There are also no events emitted on which governor's vote counted, so governors would need to check if their

_lastVotedBlock value was updated.

Recommendation

Recommend not returning early and have all votes be processed.

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

05a7fb8e7f4b0f7ef4afc0779cfa18eec5ba6329 by processing all votes.

BOP-01 RONIN DPOS CONTRACTS

https://github.com/axieinfinity/ronin-dpos-contracts/commit/05a7fb8e7f4b0f7ef4afc0779cfa18eec5ba6329

DSU-01 POSSIBLE FOR A POOL ADMIN TO DELEGATE TO A
DIFFERENT POOL

Category Severity Location Status

Inconsistency Minor contracts/ronin/staking/DelegatorStaking.sol: 78 Resolved

Description

Normally, a pool admin cannot delegate to any other pools due to the following check in delegate() :

18 function delegate(address _consensusAddr) external payable noEmptyValue

poolExists(_consensusAddr) {

19 require(!isActivePoolAdmin(msg.sender), "DelegatorStaking: admin of an

active pool cannot delegate");

However, this check is not in delegateRewards() or _delegateRewards() , so a pool admin can have their rewards

delegated to pool that they are not the admin of.

 function delegateRewards(address[] calldata _consensusAddrList, address

_consensusAddrDst)

 external

 override

 nonReentrant

 poolIsActive(_consensusAddrDst)

 returns (uint256 _amount)

 {

 return _delegateRewards(msg.sender, _consensusAddrList, _consensusAddrDst);

 }

 function _delegateRewards(

 ...

) internal returns (uint256 _amount) {

 _amount = _claimRewards(_user, _poolAddrList);

 _delegate(_stakingPool[_poolAddrDst], _user, _amount);

 }

The only check is in _delegate() , which requires the caller to not be the pool admin of the destination pool.

 function _delegate(

 ...

) internal notPoolAdmin(_pool, _delegator) {

DSU-01 RONIN DPOS CONTRACTS

Recommendation

Recommend including a check in delegateRewards() similar to the one in delegate() if the project intends to prevent

every pool admin from delegating to any pool.

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

f291728854130c0413de0ececa6765518695a71b by adding the required check when delegating rewards.

DSU-01 RONIN DPOS CONTRACTS

https://github.com/axieinfinity/ronin-dpos-contracts/commit/f291728854130c0413de0ececa6765518695a71b

PAC-01 POTENTIAL OUT-DATED OPENZEPPELIN LIBRARY USAGE

Category Severity Location Status

Language Specific Minor package.json: 25 Resolved

Description

In the Ronin Network, the signatures are verified by the recover() function from OpenZeppelin's ECDSA module. For

example,

 for (uint256 _i; _i < _signatures.length; _i++) {

 _sig = _signatures[_i];

 if (_supports[_i] == Ballot.VoteType.For) {

 _signer = ECDSA.recover(_forDigest, _sig.v, _sig.r, _sig.s);

 } else if (_supports[_i] == Ballot.VoteType.Against) {

 _signer = ECDSA.recover(_againstDigest, _sig.v, _sig.r, _sig.s);

 } else {

 revert("GovernanceProposal: query for unsupported vote type");

 }

However, according to the package.json , the version of OpenZeppelin is ^4.6.0 . For the OpenZeppelin version prior to

4.7.3, there is a vulnerability in signature malleability due to accepting EIP-2098 compact signatures in addition to the

traditional 65-byte signature format.

Reference: https://github.com/advisories/GHSA-4h98-2769-gh6h

Recommendation

Recommend using latest stable version of the OpenZeppelin library during deployment to avoid the risk of potential

vulnerabilities in an outdated version.

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

450241f8e4fa2be33c9f14ca6dca57f12af0e15a by using an updated library.

PAC-01 RONIN DPOS CONTRACTS

https://github.com/advisories/GHSA-4h98-2769-gh6h
https://github.com/axieinfinity/ronin-dpos-contracts/commit/450241f8e4fa2be33c9f14ca6dca57f12af0e15a

ROR-01 LACK OF CHECK WHEN UPDATING TRUSTED
ORGANIZATION

Category Severity Location Status

Inconsistency Minor contracts/multi-chains/RoninTrustedOrganization.sol: 332 Resolved

Description

When adding a trusted organization, there is a check to ensure that the consensus, governor, and bridge voter addresses

are all different from each other.

268 address[] memory _addresses = new address[](3);

269 _addresses[0] = _v.consensusAddr;

270 _addresses[1] = _v.governor;

271 _addresses[2] = _v.bridgeVoter;

272 require(!AddressArrayUtils.hasDuplicate(_addresses),

"RoninTrustedOrganization: three addresses must be distinct");

However, this check is missing when updating a trusted organization, allowing the possibility of the governor or bridge voter

address being equal to the consensus address.

Recommendation

Recommend adding a check when updating a trusted organization to ensure that the consensus, governor, and bridge voter

addresses are all distinct from each other.

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

1d099af84e1bc0356e029508f2b9af570171939d by adding the required check when updating a trusted organization.

ROR-01 RONIN DPOS CONTRACTS

https://github.com/axieinfinity/ronin-dpos-contracts/commit/1d099af84e1bc0356e029508f2b9af570171939d

CEH-01 MODIFIER oncePerEpoch INVALID ON FIRST EPOCH

Category Severity Location Status

Volatile

Code
Informational

contracts/ronin/validator/CoinbaseExecution.sol (01/18/2023

-d722d7b): 42
Acknowledged

Description

The modifier oncePerEpoch ensures that a function can only be called once in an epoch.

42 modifier oncePerEpoch() {

43 if (epochOf(_lastUpdatedBlock) >= epochOf(block.number)) revert

ErrAlreadyWrappedEpoch();

44 _lastUpdatedBlock = block.number;

45 _;

46 }

However, in the scenario when block.number < _numberOfBlocksInEpoch , epochOf(_lastUpdatedBlock) ==

epochOf(block.number) will always be true as both of them are one.

39 function epochOf(uint256 _block) public view virtual override returns

(uint256) {

40 return _block / _numberOfBlocksInEpoch + 1;

41 }

This means that any function with the oncePerEpoch modifier, such as wrapUpEpoch , cannot be called in the first epoch.

Recommendation

Recommend adding logic to handle the case when block.number < _numberOfBlocksInEpoch .

Alleviation

[Ronin Team, 02/27/2023]: The team acknowledged the finding and decided not to change the current codebase. The

block.number will be a large number (about ~11M) after the DPoS hardfork, so this check is unnecessary.

CEH-01 RONIN DPOS CONTRACTS

CON-01 INCOMPATIBILITY WITH DEFLATIONARY TOKENS

Category Severity Location Status

Volatile

Code
Informational

contracts/mainchain/MainchainGatewayV2.sol; contracts/ron

in/RoninGatewayV2.sol
Acknowledged

Description

The Ronin Bridge protocol may face potential compatibility issues with non-standard ERC20 tokens, such as deflationary

tokens, as the exact amount of tokens locked in the bridge may not be precisely tracked.

For example, when bridging deflationary tokens with the ERC20 interface, the transaction fee can result in an unequal input

and received amount. In a scenario where a user deposits 100 deflationary tokens (with a 10% transaction fee) to the

mainchain bridge, only 90 tokens may arrive in the contract. However, on the Ronin chain, the user may still receive 100

wrapped tokens. If the user then bridges back the 100 wrapped deflationary tokens to the mainchain, they can still withdraw

100 tokens, causing the contract to lose 10 tokens.

Recommendation

Recommend regulating the tokens supported for the Ronin bridge and adding necessary mitigation mechanisms to keep

track of accurate balances if there is a need to support deflationary tokens.

Alleviation

[Ronin Team, 02/27/2023]: The team acknowledged the finding and decided not to change the current codebase.

CON-01 RONIN DPOS CONTRACTS

CSI-01 POTENTIAL DOS ATTACK ON CANDIDATE APPLICATION

Category Severity Location Status

Logical Issue Informational contracts/ronin/staking/CandidateStaking.sol: 36 Acknowledged

Description

The function applyValidatorCandidate() allows any individual to apply as a candidate, but the number of candidates is

subject to an upper limit specified in the maxValidatorCandidate() function. If the number of candidates reaches this limit,

any subsequent applyValidatorCandidate() invocations will fail due to a revert function in the CandidateManager

contract (line 75).

74 uint256 _length = _candidates.length;

75 if (_length >= maxValidatorCandidate()) revert

ErrExceedsMaxNumberOfCandidate();

This creates an opportunity for an attacker to fill the candidate list with multiple addresses, effectively denying other

addresses the ability to apply to become a candidate. This constitutes a Denial-of-service (DoS) attack.

Given that the attacker must stake no less than _minValidatorStakingAmount in order to become a candidate, a low setting of

_minValidatorStakingAmount can cause a DoS attack.

Recommendation

Recommend including a check to ensure that _minValidatorStakingAmount is a high enough value.

Alleviation

[Ronin Team, 02/27/2023]: The team acknowledged the finding and decided not to change the current codebase. The

maximum number of validator candidates will be 100 and the minimum staking amount will be 250,000 RON.

CSI-01 RONIN DPOS CONTRACTS

ROG-01 POTENTIAL REENTRANCY ATTACK

Category Severity Location Status

Volatile

Code
Informational

contracts/ronin/RoninGatewayV2.sol: 195, 204, 205, 278, 283, 2

84, 389, 390
Resolved

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another untrusted contract

before resolving any effects. If the attacker can control the untrusted contract, they can make a recursive call back to the

original function, repeating interactions that would have otherwise not run after the external call resolved the effects.

Although some of the "external" calls may be implemented in the provided smart contracts, considering possible component

upgrades, it is still recommended to exclude the risks by adding proper protections instead of relying on dependencies.

RoninGatewayV2 :

External call(s)

195

_bridgeTrackingContract.recordVote(IBridgeTracking.VoteKind.MainchainWithdrawal,

_withdrawalId, _governor);

204

_bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteKind.MainchainWithdra

wal, _withdrawalId);

State variables written after the call(s)

205 _proposal.status = VoteStatus.Executed;

If reentrancy occurs in the call to handleVoteApproved such that the original caller and the reentrancy caller are different

governors, the status of the proposal will still be Approved , meaning that the following block of code will again be executed:

203 if (_status == VoteStatus.Approved) {

204

_bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteKind.MainchainWithdra

wal, _withdrawalId);

205 _proposal.status = VoteStatus.Executed;

206 emit MainchainWithdrew(_hash, _withdrawal);

ROG-01 RONIN DPOS CONTRACTS

In particular handleVoteAppproved will be called again, possibly inflating the number of votes during a period, and the event

MainchainWithdrew will be emitted again, which may be important to how the bridge operates.

External call(s)

278 _bridgeTrackingContract.recordVote(IBridgeTracking.VoteKind.Withdrawal,

_id, _validator);

283

_bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteKind.Withdrawal,

_id);

State variables written after the call(s)

284 _proposal.status = VoteStatus.Executed;

If reentrancy occurs in the call to handleVoteApproved such that the original caller and the reentrancy caller are different

governors, the status of the proposal will still be Approved , meaning that the following block of code will again be executed:

282 if (_status == VoteStatus.Approved) {

283

_bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteKind.Withdrawal,

_id);

284 _proposal.status = VoteStatus.Executed;

In particular handleVoteAppproved will be called again, possibly inflating the number of votes during a period.

External call(s)

389

_bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteKind.Deposit,

_receipt.id);

State variables written after the call(s)

390 _proposal.status = VoteStatus.Executed;

If reentrancy occurs in the call to handleVoteApproved such that the original caller and the reentrancy caller are different

governors, the status of the proposal will still be Approved , meaning that the following block of code will again be executed:

ROG-01 RONIN DPOS CONTRACTS

388 if (_status == VoteStatus.Approved) {

389

_bridgeTrackingContract.handleVoteApproved(IBridgeTracking.VoteKind.Deposit,

_receipt.id);

390 _proposal.status = VoteStatus.Executed;

391 _receipt.info.handleAssetTransfer(payable(_receipt.ronin.addr),

_receipt.ronin.tokenAddr, IWETH(address(0)));

392 emit Deposited(_receiptHash, _receipt);

In particular handleVoteAppproved will be called again, possibly inflating the number of votes during a period, tokens are

again transferred or minted to the recipient, and the Deposited event is again emitted.

Recommendation

Recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown contracts or applying

OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the aforementioned functions to prevent reentrancy

attack.

Alleviation

[Ronin Team, 03/03/2023]: The team acknowledged this issue and fixed it in commit

7cbae4761f05c24f2fbd7f2acbd8dfcac0d591d0.

ROG-01 RONIN DPOS CONTRACTS

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/axieinfinity/ronin-dpos-contracts/commit/7cbae4761f05c24f2fbd7f2acbd8dfcac0d591d0

ROO-01 PURPOSE OF VOTING FOR BRIDGE OPERATORS

Category Severity Location Status

Inconsistency Informational contracts/ronin/RoninGovernanceAdmin.sol: 296 Resolved

Description

There is currently no explicit relationship between bridge operator governance proposals and the actual bridge operators.

Bridge operators are required to ensure the gateways work properly by signing deposit and withdrawal receipts. On the

Ronin chain, these bridge operators are determined by querying the validator contract.

403 function _getValidatorWeight(address _addr) internal view returns (uint256

_weight) {

404 _weight = _validatorContract.isBridgeOperator(_addr) ? 1 : 0;

405 require(_weight > 0, "RoninGatewayV2: unauthorized sender");

406 }

The Ronin validator contract lets a validator be a bridge operator as long as it has not requested an emergency exit.

445 bool _isBridgeOperatorAfter = !_emergencyExitRequested;

446 if (!_isBridgeOperatorBefore && _isBridgeOperatorAfter) {

447 _validatorMap[_validator] =

_validatorMap[_validator].addFlag(EnumFlags.ValidatorFlag.BridgeOperator);

On the other hand, the admin of the main chain decides who the bridge operators are.

ROO-01 RONIN DPOS CONTRACTS

99 function replaceBridgeOperators(address[] calldata _list) external onlyAdmin

{

100 address _addr;

101 for (uint256 _i = 0; _i < _list.length; _i++) {

102 _addr = _list[_i];

103 if (_bridgeOperatorAddedBlock[_addr] == 0) {

104 _bridgeOperators.push(_addr);

105 }

106 _bridgeOperatorAddedBlock[_addr] = block.number;

107 }

108

109 {

110 uint256 _i;

111 while (_i < _bridgeOperators.length) {

112 _addr = _bridgeOperators[_i];

113 if (_bridgeOperatorAddedBlock[_addr] < block.number) {

114 delete _bridgeOperatorAddedBlock[_addr];

115 _bridgeOperators[_i] = _bridgeOperators[_bridgeOperators.length - 1];

116 _bridgeOperators.pop();

117 continue;

118 }

119 _i++;

120 }

121 }

122

123 emit BridgeOperatorsReplaced(_list);

124 }

In either case, the bridge operators do not look at the results of governors voting for bridge operators. When a bridge

operator governance proposal is passed, only the _lastSyncedBridgeOperatorSetInfo variable is updated, but this

variable has no influence on the bridge operators used by the gateways.

Recommendation

Recommend enforcing that the addresses in _lastSyncedBridgeOperatorSetInfo are the actual bridge operators for the

gateways.

Alleviation

[Ronin Team, 02/17/2023]: The list of bridge operators is determined on Ronin chain by querying the validator contract.

This list is then relayed into the mainchain via a proposal. Note that the admin of the MainchainGatewayV2 contract is the

GovernanceAdmin . The call to update the bridge operator list only gets executed if there is a valid proposal.

When a new list of bridge operators is updated in RoninGateway , the _lastSyncedBridgeOperatorSetInfo is updated, along

with the BridgeOperatorsApproved event being emitted. This event will trigger a worker that receives the new operator list

ROO-01 RONIN DPOS CONTRACTS

from RoninGateway and creates a new proposal to update the list on MainchainGateway .

Also note that the _lastSyncedBridgeOperatorSetInfo also helps the MainchainGateway keep up-to-date with the list on

Ronin, preventing duplication updates and outdated updates.

ROO-01 RONIN DPOS CONTRACTS

SLD-01 IMPLEMENTATION OF DOUBLE SIGN SLASHING

Category Severity Location Status

Logical Issue Informational contracts/ronin/slash-indicator/SlashDoubleSign.sol: 24 Resolved

Description

There are some concerns regarding how the function slashDoubleSign() works:

1. The only check for provided evidence is _pcValidateEvidence() and it is unclear if in the next block, the provided

evidence can be used again, possibly allowing repeated slashing of a validator.

2. Since validation of the evidence _header1 and _header2 does not include _consensusAddr as an input, there is

a concern that the evidence can be used against any validator.

3. Regarding the jailing time, a validator slashed for double signing is jailed until the block

_doubleSigningJailUntilBlock instead of something akin to block.number + duration . There is a concern that

validators who conduct double signing after _doubleSigningJailUntilBlock will not be jailed.

Recommendation

Recommend changing the design of the function slashDoubleSign() if any of the above issues are valid.

Alleviation

[Ronin Team, 02/08/2023]:

1. It is not intended to be able to submit the same evidence twice. However, if a validator gets double-sign slashed, it

will not be selected as a validator again so this does not need to be enforced.

2. The _header1 , and _header2 contains _consensusAddr so it will not be a problem.

3. _doubleSigningJailUntilBlock is set to be very big, so the block number cannot reach this point.

SLD-01 RONIN DPOS CONTRACTS

SUU-01 LACK OF CHECK WHEN SLASHING FOR UNAVAILABILITY

Category Severity Location Status

Logical Issue Informational contracts/ronin/slash-indicator/SlashUnavailability.sol: 45 Resolved

Description

There are no established criteria for slashing a validator for unavailability. In contrast, when slashing for double signing, the

caller must provide evidence, and when slashing for bridge voting, a check is made to determine if the governor's voting

activity meets the requirements.

However, with regards to unavailability, there are no provisions for incrementing the validator's _unavailabilityIndicator

value.

Recommendation

Recommend including checks so that any slashes for unavailability are valid.

Alleviation

[Ronin Team, 02/08/2023]: The _unavailabilityIndicator can only be increased when the validator misses a block. We do

have verification for this (but not in the smart contract).

SUU-01 RONIN DPOS CONTRACTS

APPENDIX RONIN DPOS CONTRACTS

Finding Categories

Categories Description

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Language

Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX RONIN DPOS CONTRACTS

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, confidentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER RONIN DPOS CONTRACTS

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER RONIN DPOS CONTRACTS

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Ronin DPoS Contracts Security Assessment CertiK Verified on Mar 30th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

